Applied Physics A

, Volume 107, Issue 4, pp 789–794 | Cite as

Thermoelectric properties of porous silicon

  • J. de Boor
  • D. S. Kim
  • X. Ao
  • M. Becker
  • N. F. Hinsche
  • I. Mertig
  • P. Zahn
  • V. Schmidt
Rapid communication


We have studied the thermoelectric properties of porous silicon, a nanostructured, yet single-crystalline form of silicon. Using electrochemical etching, liquid-phase doping, and high-temperature passivation, we show that porous Si can be fabricated such that it has thermoelectric properties superior to bulk Si, for both n- and p-type doping. Hall measurements reveal that the charge carrier mobility is reduced compared to the bulk material which presently limits the increase in thermoelectric efficiency.


Porous Silicon Thermoelectric Property Thermoelectric Material Charge Carrier Concentration Thermoelectric Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the help of D. Pantel with the Hall measurements, the help of K. Sklarek with sample preparation, and financial support from BMBF Project PoSiTeM (03X3539A).


  1. 1.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, A. Majumdar, Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 10(11), 4341–4348 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    J. de Boor, N. Geyer, J.V. Wittemann, U. Gösele, V. Schmidt, Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotech. 21(9), 095302 (2010). (5pp) ADSCrossRefGoogle Scholar
  5. 5.
    J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Holey silicon as an efficient thermoelectric material. Nano Lett. 10(10), 4279–4283 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5(10), 718–721 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    R.G. Mathur, R.M. Mehra, P.C. Mathur, Thermoelectric power in porous silicon. J. Appl. Phys. 83(11), 5855–5857 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    G. Gesele, J. Lindsmeier, V. Drach, J. Fricke, R. Arens-Fischer, Temperature-dependent thermal conductivity of porous silicon. J. Phys. D, Appl. Phys. 30, 2911–2916 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    H. Foell, M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon. Mater. Sci. Eng. 39(4), 93–141 (2002) CrossRefGoogle Scholar
  10. 10.
    J. Lee, G.A. Galli, J.C. Grossman, Nanoporous Si as an efficient thermoelectric material. Nano Lett. 8(11), 3750–3754 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Y. He, D. Donadio, J.-H. Lee, J.C. Grossman, G. Galli, Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano 5(3), 1839–1844 (2011) CrossRefGoogle Scholar
  12. 12.
    A. Yamamoto, H. Takazawa, T. Ohta, Thermoelectric transport properties of porous silicon nanostructure, in 18th International Conference on Thermoelectrics (1999) Google Scholar
  13. 13.
    A. Yamamoto, M. Takimoto, T. Ohta, L. Whitlow, K. Miki, K. Sakamoto, K. Kamisako, Two dimensional quantum net of heavily doped porous silicon, in XVII International Conference on Thermoelectrics 1998, Proceedings ICT 98. pp. 198–201 (1998) Google Scholar
  14. 14.
    A. Uhlir, Electrolytic shaping of germanium and silicon. Bell Syst. Tech. J. 35(2), 333–347 (1956) Google Scholar
  15. 15.
    D.R. Turner, Electropolishing silicon in hydrofluoric acid solutions. J. Electrochem. Soc. 105(7), 402–408 (1958) CrossRefGoogle Scholar
  16. 16.
    V. Lehmann, Electrochemistry of Silicon (Wiley-VCH, Weinheim, 2002) CrossRefGoogle Scholar
  17. 17.
    M. Becker, U. Goesele, A. Hofmann, S. Christiansen, Highly p-doped regions in silicon solar cells quantitatively analyzed by small angle beveling and micro-Raman spectroscopy. J. Appl. Phys. 106(7), 1 (2009) CrossRefGoogle Scholar
  18. 18.
    L.J. van der Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958) Google Scholar
  19. 19.
    J. de Boor, V. Schmidt, Complete characterization of thermoelectric materials by a combined van der Pauw approach. Adv. Mater. 22(38), 4303–4307 (2010) CrossRefGoogle Scholar
  20. 20.
    J. de Boor, V. Schmidt, Efficient thermoelectric van der Pauw measurements. Appl. Phys. Lett. 99, 2 (2011) Google Scholar
  21. 21.
    J. de Boor, D.S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Föll, V. Schmidt, Temperature and structure size dependence of the thermal conductivity of porous silicon. Europhys. Lett. 96(1), 16001 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    T.C. Harman, J.H. Cahn, M.J. Logan, Measurement of thermal conductivity by utilization of the Peltier effect. J. Appl. Phys. 30(9), 1351–1359 (1959) ADSCrossRefGoogle Scholar
  23. 23.
    J. de Boor, V. Schmidt, Complete characterization of thermoelectric materials by a combined van der Pauw approach and the effect of radiation losses, in MRS Online Proceedings Library, 1314, mrsf10-1314-ll07-01. MRS (2011) Google Scholar
  24. 24.
    X. Ao, J. de Boor, V. Schmidt, Radiation-corrected Harman method for characterization of thermoelectric materials. Adv. Eng. Mater. 1(6), 1007–1011 (2011) CrossRefGoogle Scholar
  25. 25.
    N.F. Hinsche, I. Mertig, P. Zahn, Effect of strain on the thermoelectric properties of silicon: an ab initio study. J. Phys., Condens. Matter 23(29), 295502 (2011) CrossRefGoogle Scholar
  26. 26.
    S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.-P. Fleurial, Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445–2452 (2009) CrossRefGoogle Scholar
  27. 27.
    G. Masetti, M. Severi, S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-doped, phosphorus-doped, and boron-doped silicon. IEEE Trans. Electron Devices 30(7), 764–769 (1983) CrossRefGoogle Scholar
  28. 28.
    V. Schmidt, J.V. Wittemann, U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 110, 361–388 (2010) CrossRefGoogle Scholar
  29. 29.
    N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt, C. Hecht, C. Schulz, H. Wiggers, Plasma synthesis of nanostructures for improved thermoelectric properties. J. Phys. D 44, 17 (2011) CrossRefGoogle Scholar
  30. 30.
    A.J. Simons, T.I. Cox, M.J. Uren, P.D.J. Calcott, The electrical-properties of porous silicon produced from n(+) silicon substrates. Thin Solid Films 255(1-2), 12–15 (1995). Symposium F—Porous Silicon and Related Materials, at the 1994 Spring Conference of the European-Materials-Research-Society, Strasbourg, France, May 24–27, 1994 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. de Boor
    • 1
  • D. S. Kim
    • 1
  • X. Ao
    • 1
  • M. Becker
    • 1
  • N. F. Hinsche
    • 2
  • I. Mertig
    • 1
    • 2
  • P. Zahn
    • 2
  • V. Schmidt
    • 1
  1. 1.Max Planck Institute of Microstructure PhysicsHalleGermany
  2. 2.Institut für PhysikMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations