Advertisement

Applied Physics A

, Volume 107, Issue 2, pp 269–273 | Cite as

Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget

  • M. BaumEmail author
  • S. Polster
  • M. P. M. Jank
  • I. Alexeev
  • L. Frey
  • M. Schmidt
Rapid communication

Abstract

Layers of ZnO nanoparticles with thicknesses of about 40 nm were prepared on Si substrates. It was shown that UV laser irradiation is suitable for consolidation and significant densification of the ZnO particle layers under ambient conditions. Both experiments and simulations show that an underlying SiO2 particle layer has a beneficial effect in inhibiting heat transfer towards the substrate and thus enables the application of temperature-sensitive carrier substrates like polymer foils despite the extremely high melting temperature of ZnO.

Keywords

Buffer Layer Laser Treatment Pulse Laser Deposition SiO2 Particle Laser Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The support of the Deutsche Forschungsgemeinschaft (DFG, Graduiertenkolleg 1161/2) is gratefully acknowledged. Additionally, we are thankful for the support by Evonik Industries AG and also for the production of particle suspensions by Daniel Kilian. Furthermore, we want to thank Anke Haas for operating the electron microscope. Moreover, the authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

References

  1. 1.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10, 45 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    M. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    J.-S. Lee, M.V. Kovalenko, J. Huang, D.S. Chung, D.V. Talapin, Nat. Nanotechnol. 6, 348 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    S. Walther, S. Schäfer, M.P.M. Jank, H. Thiem, W. Peukert, L. Frey, H. Ryssel, Microelectron. Eng. 87, 2312 (2010) CrossRefGoogle Scholar
  6. 6.
    M. Baum, I. Alexeev, M. Schmidt, J. Laser Nano/Microeng. 6, 191 (2011) CrossRefGoogle Scholar
  7. 7.
    Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, J. Appl. Phys. 98, 041301 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    H. Pan, N. Misra, S.H. Ko, C.P. Grigoropoulos, N. Miller, E.E. Haller, O. Dubon, Appl. Phys. A 94, 111 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    D. Lee, H. Pan, S.H. Ko, H.K. Park, E. Kim, C.P. Grigoropoulos, Appl. Phys. A (2012). doi: 10.1007/s00339-012-6792-y
  10. 10.
    S. Walther, S. Polster, B. Meyer, M.P.M. Jank, H. Ryssel, L. Frey, J. Vac. Sci. Technol. B 29, 01A601 (2011) Google Scholar
  11. 11.
    Y.C. Liu, J.H. Hsieh, S.K. Tung, Thin Solid Films 510, 32 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    E.N. Bunting, J. Am. Ceram. Soc. 13, 5 (1930) CrossRefGoogle Scholar
  13. 13.
    M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Chem. Soc. Rev. 33, 23 (2004) CrossRefGoogle Scholar
  14. 14.
    H.G. Hirschberg, Handbuch Verfahrenstechnik und Anlagenbau. Chemie, Technik und Wirtschaftlichkeit (Springer, Berlin, 1999), p. 300 Google Scholar
  15. 15.
    O.V. Mazurin, M.V. Streltsina, T.P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1983), p. 55 Google Scholar
  16. 16.
    G.A. Slack, C.J. Glassbrenner, Phys. Rev. 134, A1058 (1964) CrossRefGoogle Scholar
  17. 17.
    VDI Gesellschaft, VDI-Wärmeatlas (Springer, Berlin, 2006) Google Scholar
  18. 18.
    Y.C. Liu, J.H. Hsieh, S.K. Tung, Thin Solid Films 510, 32 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985), p. 555 Google Scholar
  20. 20.
    C. Kittel, Einführung in die Festkörperphysik (Oldenbourg, München, 2005), p. 140 Google Scholar
  21. 21.
    N. Soga, O.L. Anderson, J. Appl. Phys. 38, 2985 (1967) ADSCrossRefGoogle Scholar
  22. 22.
    R. Prasher, Phys. Rev. B 74, 165413 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kinemuchi, M. Mikami, K. Kobayashi, K. Watari, Y. Hotta, J. Electron. Mater. 39, 2059 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Baum
    • 1
    • 2
    Email author
  • S. Polster
    • 3
  • M. P. M. Jank
    • 4
  • I. Alexeev
    • 1
    • 2
  • L. Frey
    • 3
    • 4
  • M. Schmidt
    • 1
    • 2
  1. 1.Chair of Photonic TechnologiesFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-University Erlangen-NurembergErlangenGermany
  3. 3.Chair of Electron DevicesFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  4. 4.Fraunhofer Institute for Integrated Systems and Device TechnologyErlangenGermany

Personalised recommendations