Applied Physics A

, Volume 107, Issue 3, pp 621–629 | Cite as

Fluoroethylenepropylene ferroelectrets with patterned microstructure and high, thermally stable piezoelectricity

  • X. Zhang
  • J. Hillenbrand
  • G. M. Sessler
  • S. Haberzettl
  • K. Lou
Invited paper

Abstract

Layered fluoroethylenepropylene (FEP) ferroelectret films were prepared from sheets of FEP films by template-patterning followed by a fusion-bonding process and contact charging. The layered ferroelectret films show consistency and regularity in their void structures and good bonding of the layers. For films composed of two 12.5 μm thick FEP layers and a typical void of 60 μm height, the critical voltage necessary for the built-up of the “macro-dipoles” in the inner voids is approximately 800 V. At room temperature, Young’s modulus in the thickness direction, determined from dielectric resonance spectra of the fabricated films with a typical thickness of 85 μm, is about 0.21 MPa. Initial quasistatic piezoelectric d33 coefficients of samples contact charged at a peak voltage of 1500 V are in the range of 1000–3000 pC/N. From these, ferroelectrets with high quasistatic and dynamic (up to 20 kHz) d33 coefficients of up to 1000 pC/N and 400 pC/N, respectively, which are thermally stable at 120°C, can be obtained by proper annealing treatment. This constitutes a significant improvement compared to previous results.

References

  1. 1.
    S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Phys. Today 57(2), 37 (2004) CrossRefGoogle Scholar
  2. 2.
    R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002) CrossRefGoogle Scholar
  3. 3.
    S. Bauer, IEEE Trans. Dielectr. Electr. Insul. 13, 953 (2006) Google Scholar
  4. 4.
    J. Lekkala, R. Poramo, K. Nyholm, T. Kaikkonen, Med. Biol. Eng. Comput. 34, 67 (1996) Google Scholar
  5. 5.
    www.emfit.com (2012)
  6. 6.
    J. Hillenbrand, G.M. Sessler, J. Acoust. Soc. Am. 116, 3267 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    M. Dansachmüller, I. Minev, P. Bartu, I. Graz, N. Arnold, S. Bauer, Appl. Phys. Lett. 91, 222906 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S.P. Lacour, S. Wagner, Appl. Phys. Lett. 89, 073501 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    J. Hillenbrand, M. Kodejska, Y. Garcin, H. von Seggern, G.M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 17, 1021 (2010) CrossRefGoogle Scholar
  10. 10.
    X. Zhang, J. Huang, J. Chen, Z. Wan, S. Wang, Z. Xia, Appl. Phys. Lett. 91, 182901 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    E. Saarimäki, M. Paajanen, A. Savijärvi, H. Minkkinen, M. Wegener, O. Voronina, R. Schulze, W. Wirges, R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 13, 963 (2006) Google Scholar
  12. 12.
    W. Wirges, M. Wegener, O. Voronina, L. Zirkel, R. Gerhard-Multhaupt, Adv. Funct. Mater. 17, 324 (2007) CrossRefGoogle Scholar
  13. 13.
    P. Fang, M. Wegener, W. Wirges, R. Gerhard, Appl. Phys. Lett. 90, 192908 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    G.S. Neugschwandtner, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, Appl. Phys. A 70, 1 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    R. Gerhard-Multhaupt, W. Künstler, T. Görne, A. Pucher, T. Weinhold, M. Seiß, Z. Xia, A. Wedel, R. Danz, IEEE Trans. Dielectr. Electr. Insul. 7, 480 (2000) CrossRefGoogle Scholar
  16. 16.
    Z. Hu, H. Von Seggern, J. Appl. Phys. 99, 024102 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    X. Zhang, J. Hillenbrand, G.M. Sessler, Appl. Phys. A 84, 139 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    X. Zhang, J. Hillenbrand, G.M. Sessler, J. Appl. Phys. 101, 054114 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    J. Huang, X. Zhang, Z. Xia, X. Wang, J. Appl. Phys. 103, 084111 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    R.A.P. Altafim, X. Qiu, W. Wirges, R. Gerhard, R.A.C. Altafim, H.C. Basso, W. Jenninger, J. Wagner, J. Appl. Phys. 106, 014106 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    X. Zhang, X. Wang, G. Cao, D. Pan, Z. Xia, Appl. Phys. A 97, 859 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    X. Zhang, G. Cao, Z. Sun, Z. Xia, J. Appl. Phys. 108, 064113 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    Z. Sun, X. Zhang, Z. Xia, X. Qiu, W. Wirges, R. Gerhard, C. Zeng, C. Zhang, B. Wang, Appl. Phys. A 105, 197 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    S. Zhukov, F. Fedosov, H. von Seggern, J. Phys. D, Appl. Phys. 44, 105501 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    H. von Seggern, S. Zhukov, S. Fedosov, IEEE Trans. Dielectr. Electr. Insul. 18, 49 (2011) CrossRefGoogle Scholar
  26. 26.
    Z. An, J. Yao, M. Mao, Y. Zhang, Z. Xia, J. Electrost. 68, 523 (2010) CrossRefGoogle Scholar
  27. 27.
    G.M. Sessler, Electrets, 3rd edn. (Springer, New York, 1999) Google Scholar
  28. 28.
    G.S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G.M. Sessler, M. Paajanen, J. Lekkala, Appl. Phys. Lett. 77, 3827 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842 (2003) CrossRefGoogle Scholar
  30. 30.
    J. Hillenbrand, G.M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 11, 72 (2004) CrossRefGoogle Scholar
  31. 31.
    J. Hillenbrand, G.M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 7, 537 (2000) CrossRefGoogle Scholar
  32. 32.
    M. Lindner, S. Bauer-Gogonea, S. Bauer, M. Paajanen, J. Raukola, J. Appl. Phys. 91, 5283 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    J. Hillenbrand, G.M. Sessler, in Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Press, New York, 2000), pp. 161–165 Google Scholar
  34. 34.
    M. Paajanen, H. Välimäki, J. Lekkala, J. Electrost. 48, 193 (2000) CrossRefGoogle Scholar
  35. 35.
    J. Hillenbrand, G.M. Sessler, X. Zhang, J. Appl. Phys. 98, 064105 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    R. Schwödiauer, I. Graz, S. Bauer, in IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference (2004), pp. 134–137 Google Scholar
  37. 37.
    F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. (Leipz.) 273(5), 69 (1889) ADSCrossRefGoogle Scholar
  38. 38.
    M. Wegener, M. Paajanen, W. Wirges, R. Gerhard-Multhaupt, in IEEE 11th International Symposium on Electrets (2002), pp. 54–57 CrossRefGoogle Scholar
  39. 39.
    E. Meyer, E.-G. Neumann, Physikalische und Technische Akustik, 3rd edn. (1979) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • X. Zhang
    • 1
    • 2
  • J. Hillenbrand
    • 1
  • G. M. Sessler
    • 1
  • S. Haberzettl
    • 1
  • K. Lou
    • 2
  1. 1.Institute for Telecommunications TechnologyDarmstadtGermany
  2. 2.Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & Department of PhysicsTongji UniversityShanghaiChina

Personalised recommendations