Applied Physics A

, Volume 107, Issue 3, pp 583–588

Dielectric elastomer and ferroelectret films combined in a single device: how do they reinforce each other?

Invited paper


Dielectric elastomers (DE) are soft polymer materials exhibiting large deformations under electrostatic stress. When a prestretched elastomer is stuck to a flat plastic frame, a complex structure that can be used as an actuator (DEA) is formed due to self-organization and energy minimization. Here, such a DEA was equipped with a ferroelectret film. Ferroelectrets are internally charged polymer foams or void-containing polymer-film systems combining large piezoelectricity with mechanical flexibility and elastic compliance. In their dielectric spectra, ferroelectrets show piezoelectric resonances that can be used to analyze their electromechanical properties. The antiresonance frequencies (fp) of ferroelectret films not only are directly related to their geometric parameters, but also are sensitive to the boundary conditions during measurement. In this paper, a fluoroethylenepropylene (FEP) ferroelectret film with tubular void channels was glued to a plastic frame prior to the formation of self-organized minimum-energy DEA structure. The dielectric resonance spectrum (DRS) of the ferroelectret film was measured in-situ during the actuation of the DEA under applied voltage. It is found that the antiresonance frequency is a monotropic function of the bending angle of the actuator. Therefore, the actuation of DEAs can be used to modulate the fp of ferroelectrets, while the fp can also be taken for in-situ diagnosis and for precise control of the actuation of the DEA. Combination of DEAs and ferroelectrets brings a number of possibilities for application.


  1. 1.
    S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Phys. Today 57(2), 37 (2004) CrossRefGoogle Scholar
  2. 2.
    R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002) CrossRefGoogle Scholar
  3. 3.
    X. Qiu, R. Gerhard, A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 18, 34 (2011) CrossRefGoogle Scholar
  4. 4.
    K. Kirjavainen, Electromechanical film and procedure for manufacturing same, US Patent No. 4654546 (1987) Google Scholar
  5. 5.
    A. Mellinger, M. Wegener, W. Wirges, R. Reddy Mallepally, R. Gerhard-Multhaupt, Ferroelectrics 331, 189 (2006) CrossRefGoogle Scholar
  6. 6.
    R.A.P. Altafim, X. Qiu, W. Wirges, R. Gerhard, R.A.C. Altafim, H.C. Basso, W. Jenninger, J. Wagner, J. Appl. Phys. 106, 014106 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen (eds.), Dielectric elastomers as electromechanical transducers (Elsevier, Amsterdam, 2008) Google Scholar
  8. 8.
    F. Carpi, S. Bauer, D. De Rossi, Science 330, 1759 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    P. Brochu, Q. Pei, Macromol. Rapid Commun. 31, 10 (2010) and references therein CrossRefGoogle Scholar
  10. 10.
    C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Proc. Natl. Acad. Sci. USA 107, 4505 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    L.A. Toth, A.A. Goldenberg, Proc. SPIE 4695, 323 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Appl. Phys. Lett. 92, 192903 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    T.A. Gisby, S.Q. Xie, E.P. Calius, I.A. Anderson, Proc. SPIE 7642, 764213 (2010) CrossRefGoogle Scholar
  14. 14.
    R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, Science 287, 836 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    G. Kofod, J. Phys. D, Appl. Phys. 41, 215405 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    G. Kofod, M. Paajanen, S. Bauer, Appl. Phys. A, Mater. Sci. Process. 85, 141 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    B. O’Brien, T. McKay, E. Calius, S. Xie, I. Anderson, Appl. Phys. A, Mater. Sci. Process. 94, 507 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    G. Kofod, W. Wirges, M. Paajanen, S. Bauer, Appl. Phys. Lett. 90, 081916 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    G.S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G.M. Sessler, M. Paajanen, J. Lekkala, Appl. Phys. Lett. 77, 3827 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842 (2003) CrossRefGoogle Scholar
  21. 21.
    S. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951) MATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Applied Condensed-Matter Physics, Department of Physics and Astronomy, Faculty of ScienceUniversity of PotsdamPotsdam-GolmGermany

Personalised recommendations