Applied Physics A

, Volume 107, Issue 3, pp 559–566 | Cite as

Electrocaloric effect in ferroelectric polymers

  • S. G. Lu
  • B. Rozic
  • Q. M. Zhang
  • Z. Kutnjak
  • R. Pirc
Invited paper

Abstract

The electrocaloric effect (ECE) of poly (vinyledene fluoride–trifluoroethylene) (P(VDF–TrFE)) 55/45 mol% copolymers was directly measured, which confirms the results deduced from Maxwell relation. The adiabatic temperature change ΔT under a given electric field peaks at the ferroelectric–paraelectric (FE–PE) transition. Away from it, ECE becomes small. ΔT versus applied electric field can be described well by a modified Belov–Goryaga equation. The ECE in ferroelectric polymers, especially near FE–PE transition where larger ECE is observed, are analyzed under different boundary conditions employing phenomenological theory and constitutive equations. The secondary pyroelectricity is found to play a significant role which enhances ECE in ferroelectric polymers.

References

  1. 1.
    M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977), p. 148 Google Scholar
  2. 2.
    E. Fatuzzo, W.J. Merz, Ferroelectricity (North-Holland, Amsterdam, 1967) Google Scholar
  3. 3.
    T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectricity (Gordon & Breach, London, 1976) Google Scholar
  4. 4.
    Yu.V. Sinyavskii, Chem. Pet. Eng. 31, 501 (1995) CrossRefGoogle Scholar
  5. 5.
    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    V.K. Pecharsky, A.P. Holm, K.A. Gschneidner Jr., R. Rink, Phys. Rev. Lett. 91, 197204 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, Oxford, 2005) Google Scholar
  8. 8.
    W.G. Cady, Piezoelectricity—An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals (Dover, New York, 1964) Google Scholar
  9. 9.
    P. Kobeko, J. Kurtschatov, Z. Phys. 66, 192 (1930) ADSCrossRefGoogle Scholar
  10. 10.
    G.G. Wiseman, J. Kuebler, Phys. Rev. 131, 2023 (1963) ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Tuttle, D.A. Payne, Ferroelectrics 37, 603 (1981) CrossRefGoogle Scholar
  12. 12.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Qiu, Q. Jiang, Eur. Phys. J. B 71, 15 (2009) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    G. Akcay, S.P. Alpay, J.V. Mantese, G.A. Rossetti Jr., Appl. Phys. Lett. 90, 252909 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    D. Saranya, A.R. Chaudhuri, J. Parui, S.B. Krupanidhi, Bull. Mater. Sci. 32, 259 (2009) CrossRefGoogle Scholar
  17. 17.
    B. Li, J.B. Wang, X.L. Zhong, F. Wang, Y.C. Zhou, J. Appl. Phys. 107, 014109 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    G. Akcay, S.P. Alpay, G.A. Rossetti Jr., J.F. Scott, J. Appl. Phys. 103, 024104 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    B. Neese, B. Chu, S.G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Science 321, 821 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    S.G. Lu, Q.M. Zhang, Adv. Mater. 21, 1983 (2009) MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, X.Y. Li, E. Furman, M.R. Lin, L.J. Gorny, B. Malic, M. Kosec, R. Blinc, R. Pirc, Appl. Phys. Lett. 97, 162904 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, R. Pirc, M. Lin, X. Li, L. Gorny, Appl. Phys. Lett. 97, 202901 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, B. Neese, Appl. Phys. Lett. 98, 122906 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    B. Roǐč, B. Malič, H. Uršič, J. Holc, M. Kosec, B. Neese, Q.M. Zhang, Z. Kutnjak, Ferroelectrics 405, 26 (2010) CrossRefGoogle Scholar
  25. 25.
    A.F. Devonshire, Philos. Mag. 40, 1040 (1949); 42, 1065 (1951) Google Scholar
  26. 26.
    T. Furukawa, Ferroelectrics 57, 63 (1984) CrossRefGoogle Scholar
  27. 27.
    S. Ducharme, V.M. Fridkin, A.V. Bune, S.P. Palto, L.M. Blinov, N.N. Petukhova, S.G. Yudin, Phys. Rev. Lett. 84, 175 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    W.J. Merz, Phys. Rev. 91, 513 (1953) ADSCrossRefGoogle Scholar
  29. 29.
    A. Min, L.E. Cross, R.E. Newnham, Ferroelectrics 37, 647 (1981) CrossRefGoogle Scholar
  30. 30.
    H. Yao, K. Ema, C.W. Garland, Rev. Sci. Instrum. 69, 172 (1998) ADSCrossRefGoogle Scholar
  31. 31.
    Z. Kutnjak, J. Petzelt, R. Blinc, Nature 441, 956 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    S.G. Lu, B. Neese, B.J. Chu, Y. Wang, Q.M. Zhang, Appl. Phys. Lett. 93, 042905 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    S.G. Lu, B. Rozic, Z. Kutnjak, Q.M. Zhang, Integr. Ferroelectr. 125, 176 (2011) CrossRefGoogle Scholar
  34. 34.
    T. Furukawa, G.E. Johnson, H.E. Bair, Y. Tajitsu, A. Chiba, E. Fukada, Ferroelectrics 32, 61 (1981) CrossRefGoogle Scholar
  35. 35.
    S.G. Lu, B. Rozic, Z. Kutnjak, Q.M. Zhang, Electrocaloric effect (ECE) in Ferroelectric Polymer Films, in I. Coondoo, ed. Ferroelectrics (InTech, Austria, 2010) Ch. 6 Google Scholar
  36. 36.
    K.P. Belov, Magnetic Transitions (Consultants Bureau, New York, 1961) Google Scholar
  37. 37.
    Y.I. Spichkin, A.V. Derkach, A.M. Tishin, M.D. Kuz’min, A.S. Chernyshov, K.A. Gschneidner Jr., V.K. Pecharsky, J. Magn. Magn. Mater. 316, e555 (2007) ADSCrossRefGoogle Scholar
  38. 38.
    V.A. Zakrevskii, N.T. Sudar, Russ. Phys. J. 51, 1247 (2008) MATHCrossRefGoogle Scholar
  39. 39.
    J.A. Young, B.L. Farmer, J.A. Hinkley, Polymer 40, 2787 (1999) CrossRefGoogle Scholar
  40. 40.
    B. Neese, S.G. Lu, B.J. Chu, Q.M. Zhang, Appl. Phys. Lett. 94, 042910 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    H. Dvey-Aharon, P.L. Taylor, Ferroelectrics 33, 103 (1981) CrossRefGoogle Scholar
  42. 42.
    E.L. Nix, J. Nanayakkara, G.R. Davies, I.M. Ward, J. Polym. Sci., Part B, Polym. Phys. 26, 127 (1988) ADSCrossRefGoogle Scholar
  43. 43.
    K. Tashiro, S. Nishimura, M. Kobayashi, Macromolecule 23, 2802 (1990) ADSCrossRefGoogle Scholar
  44. 44.
    Q.M. Zhang, V. Bharti, X. Zhao, Science 280, 2101 (1998) ADSCrossRefGoogle Scholar
  45. 45.
    Z.Y. Cheng, V. Bharti, T.B. Xu, S.X. Wang, Q.M. Zhang, T. Ramotowski, F. Tito, R. Ting, J. Appl. Phys. 86, 2208 (1999) ADSCrossRefGoogle Scholar
  46. 46.
    Y. Tajitsu, A. Chiba, T. Furukawa, M. Date, E. Fukada, Appl. Phys. Lett. 36, 286 (1980) ADSCrossRefGoogle Scholar
  47. 47.
    S.T. Liu, D. Long, Proc. IEEE 66, 14 (1978) CrossRefGoogle Scholar
  48. 48.
    Z.Y. Cheng, T.B. Xu, V. Bharti, S.X. Wang, Q.M. Zhang, Appl. Phys. Lett. 74, 1901 (1999) ADSCrossRefGoogle Scholar
  49. 49.
    V. Sundar, R.E. Newnham, Ferroelectrics 135, 431 (1992) CrossRefGoogle Scholar
  50. 50.
    W. Hackenberger, E. Alberta, P.W. Rehrig, D.Y. Jeong, Q.M. Zhang, In: CARTS USA 2005 Proceedings, Palm Springs, CA, p. 239 (2005) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. G. Lu
    • 1
  • B. Rozic
    • 2
  • Q. M. Zhang
    • 1
  • Z. Kutnjak
    • 2
  • R. Pirc
    • 2
  1. 1.Materials Research Institute and Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Jozef Stefan InstituteLjubljanaSlovenia

Personalised recommendations