Advertisement

Applied Physics A

, Volume 107, Issue 4, pp 863–869 | Cite as

Electrical conductivity of nanostructured and C60-modified aluminum

  • A. ZameshinEmail author
  • M. Popov
  • V. Medvedev
  • S. Perfilov
  • R. Lomakin
  • S. Buga
  • V. Denisov
  • A. Kirichenko
  • E. Skryleva
  • E. Tatyanin
  • V. Aksenenkov
  • V. Blank
Article

Abstract

In this paper, we study the electrical conductivity of nanostructured C60-modified aluminum, and the possibility of optimizing its electrical and mechanical properties. The model proposed allows estimating the electrical conductivity of the material at low surface filling factor. A number of samples with different C60 mass fractions and aluminum crystallites sizes have been obtained and investigated; a mean crystalline size, conductivity, and hardness of these samples have been determined. A theoretical model has been compared to the experimental data. The model is in qualitative agreement with the experiment. The X-ray photoelectron spectroscopy and Raman spectroscopy studies of the material structure indicate the presence of covalent bonds between the aluminum in the clusters and the C60 molecules, and they are consistent with the proposed shell model.

Keywords

Fullerene Crystalline Size Planetary Mill Fullerene Molecule Small Crystalline Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The present work was supported through a research grant from Russian Ministry of Education and Science (Contract No. 16.552.11.7014 and Contract No. 02.740.11.0792).

References

  1. 1.
    A.D. Nikulin, A.K. Shikov, V.I. Pantsyrny, I.I. Potapenko, A.G. Silaev, N.A. Beljakov, A.E. Vorob’eva, E.A. Dergunova, N.I. Kozlenkova, M.V. Polikarpova, Patent RU 2074424 C1 (1997) Google Scholar
  2. 2.
    A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 508, 167 (2009) CrossRefGoogle Scholar
  3. 3.
    H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae, Scr. Mater. 59, 360 (2008) CrossRefGoogle Scholar
  4. 4.
    I. Estrada-Guel, C. Carreno-Gallardo, J.L. Cardoso-Cortes, E. Rocha-Rangel, J.M. Herrera-Ramirez, R. Martinez-Sanchez, J. Alloys Compd. 495, 403 (2010) CrossRefGoogle Scholar
  5. 5.
    L. Kollo, C.R. Bradbury, R. Veinthal, C. Jaggi, E. Carreno-Morelli, M. Leparoux, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 528, 6606 (2011) CrossRefGoogle Scholar
  6. 6.
    T. Tokunaga, K. Kaneko, K. Sato, Z. Horita, Scr. Mater. 58, 735 (2008) CrossRefGoogle Scholar
  7. 7.
    J.G. Hou, Y. Li, Y. Wang, W. Xu, J. Zuo, Y.H. Zhang, Phys. Status Solidi A 163, 403 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    R.Z. Valiev, I.V. Aleksandrov, Bulk Nanostructured Metallic Materials: Production, Structure and Properties (Academkniga, Moscow, 2007) (in Russian) Google Scholar
  9. 9.
    E.G. Avvakumov, Mechanical Methods of Activation of Chemical Processes (Nauka, Novosibirsk, 1986) (in Russian) Google Scholar
  10. 10.
    M. Popov, V. Medvedev, V. Blank, V. Denisov, A. Kirichenko, E. Tat’yanin, V. Aksenenkov, S. Perfilov, R. Lomakin, E. D’yakov, V. Zaitsev, J. Appl. Phys. 108, 094317 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    V.V. Medvedev, M.Y. Popov, B.N. Mavrin, V.N. Denisov, A. Kirichenko, E.V. Tat’yanin, L.A. Ivanov, V.V. Aksenenkov, S.A. Perfilov, R. Lomakin, V.D. Blank, Appl. Phys. A, Mater. Sci. Process. 105, 45 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    A.J. Maxwell, P.A. Brühwiler, S. Andersson, D. Arvanitis, B. Hernnäs, O. Karis, D.C. Mancini, N. Mårtensson, S.M. Gray, M.K.-J. Johansson, L.S.O. Johansson, Phys. Rev. B 52, R5546 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    A.J. Maxwell, P.A. Brühwiler, D. Arvanitis, J. Hasselström, M.K.-J. Johansson, N. Mårtensson, Phys. Rev. B 57, 7312 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    F.A. Mohamed, Acta Mater. 51, 4107 (2003) CrossRefGoogle Scholar
  15. 15.
    A.S. Khan, B. Farrokh, L. Takacs, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 489, 77 (2008) CrossRefGoogle Scholar
  16. 16.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 88th edn. (CRC Press, Boca Raton 2007) Google Scholar
  17. 17.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego 1996) Google Scholar
  18. 18.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie 1992) Google Scholar
  19. 19.
    M. Popov, Y. Koga, S. Fujiwara, B. Mavrin, V.D. Blank, New Diam. Front. Carbon Technol. 12, 229 (2002) Google Scholar
  20. 20.
    F.A. Mohamed, Y. Xun, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 354, 133 (2003) CrossRefGoogle Scholar
  21. 21.
    A.F. Mayadas, M. Shatzkes, J.F. Janak, Appl. Phys. Lett. 14, 345 (1969) ADSCrossRefGoogle Scholar
  22. 22.
    A.F. Mayadas, Phys. Rev. B 1, 1382 (1970) ADSCrossRefGoogle Scholar
  23. 23.
    J.J. Palacios, A.J. Perez-Jimenez, E. Louis, J.A. Verges, Nanotechnology 12, 160 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Zameshin
    • 1
    • 2
    Email author
  • M. Popov
    • 1
  • V. Medvedev
    • 1
    • 4
  • S. Perfilov
    • 1
  • R. Lomakin
    • 1
  • S. Buga
    • 1
  • V. Denisov
    • 1
  • A. Kirichenko
    • 1
  • E. Skryleva
    • 3
  • E. Tatyanin
    • 1
  • V. Aksenenkov
    • 1
  • V. Blank
    • 1
  1. 1.Technological Institute for Superhard and Novel Carbon MaterialsTroitskRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia
  3. 3.National University of Science and Technology “MISIS”MoscowRussia
  4. 4.FOM Institute DIFFER—Dutch Institute for Fundamental Energy ResearchNieuwegeinThe Netherlands

Personalised recommendations