Applied Physics A

, Volume 107, Issue 3, pp 749–754 | Cite as

Fabrication of coaxial nanowire heterostructures: SiO x nanowires with conformal TiO2 coatings

  • Avi Shalav
  • Dinesh K. Venkatachalam
  • Robert G. Elliman


Silica nanowires, grown via the active oxidation of a silicon substrate, have been coated with TiO2 using two coating methods: solution-based deposition of Ti-alkoxides and atomic layer deposition. Analysis of as-deposited and annealed films shows that it is possible to produce stable conformal coatings of either the anatase or rutile phases of TiO2 on nanowires with diameters greater than 100 nm when annealed between 500–600°C and 800–900°C, respectively, with annealing at higher temperatures (1050°C) producing coatings with a highly facetted rutile morphology. The efficacy of the process is shown to depend on nanowire diameter, with nanowires having diameters less than about 100 nm fusing together during solution-based coating and decomposing during TiO2 atomic layer deposition. The use of a suitable buffer layer is shown to be an effective means of minimizing nanowire decomposition. Finally, annealing coated nanowires under active oxidation conditions (1100°C) is shown to be an effective technique for depositing additional conformal SiO x coatings, thereby providing a means of fabricating multi-layered coaxial nanostructures.


TiO2 HfO2 Atomic Layer Deposition Rutile Phase Atomic Layer Deposition Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Australian Research Council is gratefully acknowledged for financial support. The ANU nodes of the ANFF and The AMMRF, both established under the Australian National Cooperative Research Infrastructure Strategy, are acknowledged for access to the facilities used in this work.


  1. 1.
    B. Oregan, M. Gratzel, Nature 353(6346), 737 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95(3), 735 (1995) CrossRefGoogle Scholar
  3. 3.
    S.S. Tan, L. Zou, E. Hu, Catal. Today 115(1–4), 269 (2006) CrossRefGoogle Scholar
  4. 4.
    A. Kudo, Y. Miseki, Chem. Soc. Rev. 38(1), 253 (2009) CrossRefGoogle Scholar
  5. 5.
    C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, Res. Chem. Intermed. 33(3–5), 359 (2007) CrossRefGoogle Scholar
  6. 6.
    Q.N. Li, X.M. Wang, X.H. Lu, H.E. Tian, H. Jiang, G. Lv, D.D. Guo, C.H. Wu, B.A. Chen, Biomaterials 30(27), 4708 (2009) CrossRefGoogle Scholar
  7. 7.
    M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka, Annu. Rev. Mater. Res. 35, 1 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    W.L. Kostedt, J. Drwiega, D.W. Mazyck, S.W. Lee, W. Sigmund, C.Y. Wu, P. Chadik, Environ. Sci. Technol. 39(20), 8052 (2005) CrossRefGoogle Scholar
  9. 9.
    J.W. Lee, M.R. Othman, Y. Eom, T.G. Lee, W.S. Kim, J. Kim, Microporous Mesoporous Mater. 116(1–3), 561 (2008) CrossRefGoogle Scholar
  10. 10.
    A. Shalav, T.H. Kim, R.G. Elliman, IEEE J. Sel. Top. Quantum Electron. 17(4), 785 (2011) CrossRefGoogle Scholar
  11. 11.
    T.H. Kim, A. Shalav, R.G. Elliman, J. Appl. Phys. 108(7), 076120 (2010) Google Scholar
  12. 12.
    P.K. Sekhar, A.R. Wilkinson, R.G. Elliman, T.H. Kim, S. Bhansali, J. Phys. Chem. C 112(51), 20109–20113 (2008) CrossRefGoogle Scholar
  13. 13.
    A. Shalav, T.H. Kim, R.G. Elliman, J. Appl. Phys. 107(4), 046101 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    H.W. Kim, S.H. Shim, M.H. Kong, H.H. Yang, Phys. Status Solidi A 205(8), 2002 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    A. Shalav, D.K. Venkatachalam, F. Reichardt, F. Fischer, R.G. Elliman, in MRS Fall Meeting, Boston, 2009, p. 1206-M16-05 Google Scholar
  16. 16.
    S.G. Seong, E.J. Kim, Y.S. Kim, K.E. Lee, S.H. Hahn, Appl. Surf. Sci. 256(1), 1 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    E. Biehl, U. Schubert, F. Kubel, New J. Chem. 25(8), 994 (2001) CrossRefGoogle Scholar
  18. 18.
    P. Vitanov, P. Stefanov, A. Harizanova, T. Ivanova, J. Phys. Conf. Ser. 113, 012036 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    G.N. Bokerman, (Madison, IN), J.P. Cannady, (Madison, IN), C.S. Kuivila, (LaGrange, KY): Silane products from reaction of solid silicon monoxide with organic halides. United States Patent, September 24, 5051247 (1991) Google Scholar
  20. 20.
    H. Rath, S. Anand, M. Mohapatra, P. Dash, T. Som, U.P. Singh, N.C. Mishra, Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 83(4), 559 (2009) Google Scholar
  21. 21.
    J.Y. Kim, D.W. Kim, H.S. Jung, K.S. Hong, Jpn. J. Appl. Phys. 44(8), 6148 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    O. Ohtaka, H. Fukui, K. Funakoshi, W. Utsumi, T. Irifune, T. Kikegawa, High Press. Res. 22(1), 221 (2002) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Avi Shalav
    • 1
  • Dinesh K. Venkatachalam
    • 1
  • Robert G. Elliman
    • 1
  1. 1.Department of Electronic Materials Engineering, Research School of Physics and EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations