Advertisement

Applied Physics A

, Volume 107, Issue 1, pp 155–160 | Cite as

Multi-band metamaterial absorber made of multi-gap SRRs structure

  • Qiwei Ye
  • Ying Liu
  • Hai Lin
  • Minhua Li
  • Helin YangEmail author
Article

Abstract

This paper presents a multi-band metamaterial absorber comprising three multi-gap split-ring resonators (SRRs) with different radii and ring widths, designed in combinatorial approach. Experiments demonstrate that it can perform absorption peaks at three resonant frequencies 7.10 GHz, 10.04 GHz, and 17.44 GHz with the absorption of 99.90%, 99.91%, and 99.68%, respectively. The physical mechanism of metamaterial absorber was explained through numerical calculation and simulation, which showed that three absorption peaks were caused respectively by the three four-gap SRRs. The absorber is insensitive to incident angles and polarization states, so it has broad prospect of application.

Keywords

Resonant Frequency Ring Width Copper Film Metamaterial Absorber Effective Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work is supported partly by the National Natural Science Foundation of China under Contract No. 60906030, and partially by self-determined research funds of CCNU from colleges’ basic research and operation of MOE Grant No. CCNU10A02021.

References

  1. 1.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4181 (2000) ADSGoogle Scholar
  2. 2.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    N. Seddon, T. Bearpark, Science 302, 1537 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    R.B. Hwang, H.W. Liu, C.Y. Chin, Prog. Electromagn. Res. 93, 275 (2009) CrossRefGoogle Scholar
  7. 7.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Q.Y. Wen, H.W. Zhang, Y.S. Xie, Q.H. Yang, Y.L. Liu, Appl. Phys. Lett. 95, 241111 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    T. Hu, A.C. Strikwerda, K. Fan, C.M. Bingham, W.J. Padilla, X. Zhang, R.D. Averitt, J. Phys. D, Appl. Phys. 41, 232004 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    W.R. Zhu, X.P. Zhao, B.Y. Gong, L.H. Liu, B. Su, Appl. Phys. A 102, 147 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    C.G. Hu, Z.Y. Zhao, X.N. Chen, X.G. Luo, Opt. Express 17, 11039 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    L. Huang, H. Chen, Prog. Electromagn. Res. 113, 103 (2011) Google Scholar
  13. 13.
    C.L. Ding, X.P. Zhao, J. Phys. D, Appl. Phys. 44, 215402 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    A. Noor, Z.R. Hu, J. Infrared Millim. Terahertz Waves 31, 791 (2010) CrossRefGoogle Scholar
  15. 15.
    J.F. Wang, S.B. Qu, Z. Xu, Z.T. Fu, H. Ma, Y.M. Yang, J. Phys. D, Appl. Phys. 42, 155413 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    A. Tennant, B. Chambers, Smart Mater. Struct. 13, 122 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    E. Plum, K. Tanaka, W.T. Chen, V.A. Fedotov, D.P. Tsai, N.I. Zheludev, J. Opt. 13, 055102 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    T. Hu, C. Bingham, M.D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, J. Phys. D, Appl. Phys. 43, 225102 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    E. Ekmekci, K. Topalli, T. Akin, G. Turhan-Sayan, Opt. Express 17, 16046 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    C.M. Bingham, T. Hu, X.L. Liu, R.D. Averitt, X. Zhang, W.J. Padilla, Opt. Express 16, 18565 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    N.I. Landy, C. Bingham, M. Tyler, T.N. Jokerst, D.R. Smith, W.J. Padilla, Phys. Rev. B 79, 125104 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    D.R. Smith, D.C. Vier, Th. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    Y.Z. Cheng, H. Yang, Z.Z. Cheng, N. Wu, Appl. Phys. A 102, 99 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    R.S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E.N. Economou, C.M. Soukoulis, Opt. Express 16, 18131 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    Y.Z. Cheng, H.L. Yang, J. Appl. Phys. 108, 034906 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Qiwei Ye
    • 1
  • Ying Liu
    • 1
  • Hai Lin
    • 1
  • Minhua Li
    • 1
  • Helin Yang
    • 1
    Email author
  1. 1.College of Physical Science and TechnologyCentral China Normal UniversityWuhanChina

Personalised recommendations