Applied Physics A

, Volume 107, Issue 1, pp 83–88 | Cite as

Coupling effect in a near-field object–superlens system

  • Zhengtong Liu
  • Vladimir M. Shalaev
  • Alexander V. Kildishev
Invited paper


The coupling effect in a near-field object–superlens system has been studied, where the object is a silver cylinder and the superlens is a silver slab. A semi-analytical formulation has been established to study the system with and without the coupling effect. The analysis shows that the coupling effect significantly changes the field distributions of both the object and the image, leading to the conclusion that such a system must be designed and analyzed as a whole. Our study also suggests that it is possible to design a superlens system with mismatched permittivities.


Surface Plasmon Resonance SERS Coupling Effect Field Enhancement Scattered Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported in part by ARO-50342-PH-MUR and NSF-DMR 1120923.


  1. 1.
    V.G. Veselago, Electrodynamics of substances with simultaneously negative values of sigma and mu. Sov. Phys., Usp. USSR 10, 509–514 (1968) ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    S.H. Jiang, R. Pike, A full electromagnetic simulation study of near-field imaging using silver films. New J. Phys. 7, 169 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Ramakrishna, J.B. Pendry, The asymmetric lossy near-perfect lens. J. Mod. Opt. 49, 1747–1762 (2002) ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    S.A. Ramakrishna, J.B. Pendry, M.C.K. Wiltshire, W.J. Stewart, Imaging the near field. J. Mod. Opt. 50, 1419–1430 (2003) ADSGoogle Scholar
  6. 6.
    Z.W. Liu, N. Fang, T.J. Yen, X. Zhang, Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett. 83, 5184–5186 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach. J. Opt. Soc. Am. A, Opt. Image Sci. Vis. 13, 483–493 (1996) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    R. Borghi, M. Santarsiero, F. Frezza, G. Schettini, Plane-wave scattering by a dielectric circular cylinder parallel to a general reflecting flat surface. J. Opt. Soc. Am. A, Opt. Image Sci. Vis. 14, 1500–1504 (1997) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J.J. Bowman, T.B.A. Senior, P.L.E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland, Amsterdam, 1969), revised edn. Google Scholar
  10. 10.
    A. Madrazo, M. Nietovesperinas, Scattering of electromagnetic-waves from a cylinder in front of a conducting plane. J. Opt. Soc. Am. A, Opt. Image Sci. Vis. 12, 1298–1309 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    P.J. Valle, F. Gonzalez, F. Moreno, Electromagnetic-wave scattering from conducting cylindrical structures on flat substrates—study by means of the extinction theorem. Appl. Opt. 33, 512–523 (1994) ADSCrossRefGoogle Scholar
  12. 12.
    P.J. Valle, F. Moreno, J.M. Saiz, F. Gonzalez, Near-field scattering from subwavelength metallic protuberances on conducting flat substrates. Phys. Rev. B 51, 13681–13690 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Google Scholar
  14. 14.
    P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988) Google Scholar
  15. 15.
    P.B. Johnson, R.W. Christy, Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972) ADSCrossRefGoogle Scholar
  16. 16.
    Z.T. Liu, M.D. Thoreson, A.V. Kildishev, V.M. Shalaev, Translation of nanoantenna hot spots by a metal–dielectric composite superlens. Appl. Phys. Lett. 95, 033114 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    M.D. Thoreson, R.B. Nielsen, P.R. West, A. Kriesch, Z.T. Liu, J.R. Fang, A.V. Kildishev, U. Pescheld, V.M. Shalaev, A. Boltasseva, Studies of plasmonic hot-spot translation by a metal–dielectric layered superlens, in Metamaterials: Fundamentals and Applications IV, ed. by A.D. Boardman et al. SPIE Proc., vol. 8093 (SPIE, Bellingham, 2011) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zhengtong Liu
    • 1
    • 2
  • Vladimir M. Shalaev
    • 2
  • Alexander V. Kildishev
    • 2
  1. 1.Institute of High Performance ComputingSingaporeSingapore
  2. 2.School of Electrical and Computer Engineering and Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations