Advertisement

Applied Physics A

, Volume 106, Issue 4, pp 803–806 | Cite as

Dynamics of optically excited electrons in the conducting polymer PEDT:PSS

  • Erwan Varene
  • Petra Tegeder
Article
  • 136 Downloads

Abstract

Femtosecond time-resolved two-photon photoemission spectroscopy is employed to study the dynamics of the non-equilibrium electron distribution in the conducting polymer poly(3,4-ethylene-dioxythiophene): poly-(styrenesulfonate) (PEDT:PSS) film following optical excitation at 2.1 eV. We found that the electron thermalization occurs on a ultrafast timescale of around 60 fs analogous to the relaxation times of optically excited electrons in Au(111).

Keywords

Excited Electron Charge Carrier Density Optical Parametric Amplifier Visible Pulse Hole Injection Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft through the SPP1355. We thank Norbert Koch and Johannes Frisch (Humboldt Universität zu Berlin) for helping us with the sample preparation.

References

  1. 1.
    S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, J.C. Scott, Appl. Phys. Lett. 70, 2067 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    X. Yang, D.C. Müller, D. Neher, K. Meerholz, Adv. Mater. 18, 948 (2006) CrossRefGoogle Scholar
  3. 3.
    C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus, Adv. Mater. 17, 997 (2005) CrossRefGoogle Scholar
  4. 4.
    P. Cosseddu, A. Bonfiglio, Appl. Phys. Lett. 88, 023506 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Nishihara, A. Matsuda, A. Fujii, M. Ozaki, E.L. Frankevich, K. Yoshino, Synth. Met. 154, 102 (2005) CrossRefGoogle Scholar
  6. 6.
    H. Neugebauer, J. Electroanal. Chem. 563, 153 (2004) CrossRefGoogle Scholar
  7. 7.
    N. Koch, ChemPhysChem 8, 1438 (2007) CrossRefGoogle Scholar
  8. 8.
    N. Koch, E. Vollmer, A. Elschner, Appl. Phys. Lett. 90, 043512 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    E. Varene, I. Martin, P. Tegeder, J. Phys. Chem. Lett. 2, 252 (2011) CrossRefGoogle Scholar
  10. 10.
    R.U.A. Khan, D. Poplavskyy, T. Kreouzis, D.D.C. Bradley, Phys. Rev. B 75, 035215 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    S.C.J. Meskers, J.K.J. van Duren, R.A.J. Janssen, Adv. Funct. Mater. 13, 805 (2003) CrossRefGoogle Scholar
  12. 12.
    J.R. Goldman, J.A. Prybyla, Phys. Rev. Lett. 72, 1364 (1994) ADSCrossRefGoogle Scholar
  13. 13.
    E. Knoesel, A. Hotzel, M. Wolf, Phys. Rev. B 57, 12812 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    T. Hertel, E. Knoesel, M. Wolf, G. Ertl, Phys. Rev. Lett. 76, 535 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    M. Aeschlimann, M. Bauer, S. Pawlik, R. Knorren, G. Bouzerar, K.H. Bennemann, Appl. Phys. A 71, 485 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    M. Bauer, M. Aeschlimann, J. Electron Spectrosc. Relat. Phenom. 124, 225 (2002) CrossRefGoogle Scholar
  17. 17.
    G. Moos, C. Gahl, R. Fasel, M. Wolf, T. Hertel, Phys. Rev. Lett. 87, 267402 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    M. Lisowski, P.A. Loukakos, U. Bovensiepen, M. Wolf, Appl. Phys. A 79, 739 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    W.A. Tisdale, M. Muntwiler, D.J. Norris, E.S. Aydil, X.-Y. Zhu, J. Phys. Chem. C 112, 14682 (2008) CrossRefGoogle Scholar
  20. 20.
    K.-C. Chang, M.-S. Jeng, C.-C. Yang, Y.-W. Chou, S.-K. Wu, M.A. Thomas, Y.-C. Peng, J. Electron. Mater. 38, 1182 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    S. Hagen, Y. Luo, R. Haag, M. Wolf, P. Tegeder, New J. Phys. 12, 125022 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    P.M. Echenique, J.M. Pitarke, E.V. Chulkov, A. Rubio, Chem. Phys. 251, 1 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Fachbereich PhysikFreie Universität BerlinBerlinGermany

Personalised recommendations