Applied Physics A

, Volume 107, Issue 2, pp 445–454

Real-time control of polarisation in ultra-short-pulse laser micro-machining

  • O. J. Allegre
  • W. Perrie
  • K. Bauchert
  • D. Liu
  • S. P. Edwardson
  • G. Dearden
  • K. G. Watkins
Article

Abstract

The use of a fast-response, transmissive, ferroelectric liquid-crystal device for real-time control of the polarisation direction of a femtosecond laser beam, and the benefits for various aspects of ultra-short pulse micro-machining, are discussed. Several configurations have been used to drive the polarisation in real-time. Our microscopic investigations of the resulting features revealed significant improvements in process efficiency and quality, compared to static linear and circular polarisations. Following our successful micro-machining tests, real-time polarisation control could emerge as a powerful tool in laser engineering.

References

  1. 1.
    D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, V. Konov, Top. Appl. Phys. 96, 131–156 (2004) CrossRefGoogle Scholar
  2. 2.
    F. Dausinger, Proc. SPIE 5777, 840–845 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    D. Breitling, A. Ruf, F. Dausinger, Proc. SPIE 5339, 49–63 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    N. Sudani, K. Venkatakrishnan, B. Tan, Opt. Lasers Eng. 47, 850–854 (2009) CrossRefGoogle Scholar
  5. 5.
    N. Rizvi, RIKEN Rev. 50, 107–112 (2003) Google Scholar
  6. 6.
    A. Ostendorf, T. Bauer, F. Korte, J.R. Howorth, C. Momma, N.H. Rizvi, F. Saviot, F. Salin, Proc. SPIE 4633, 128–135 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    P.S. Banks, M.D. Feit, A.M. Rubenchik, B.C. Stuart, M.D. Perry, Appl. Phys. A 69, S377–S380 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    S. Hahne, B.F. Johnston, M.J. Withford, Appl. Opt. 46, 954–958 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    C. Föhl, F. Dausinger, Proc. SPIE 5063, 346–351 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, H. Welling, Appl. Phys. A 68, 563–567 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    C. Föhl, D. Breitling, F. Dausinger, Proc. SPIE 5121, 271–279 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    H.K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, G. Kamlage, J. Laser Appl. 12, 23–27 (2000) CrossRefGoogle Scholar
  13. 13.
    V.G. Niziev, A.V. Nesterov, J. Phys. D, Appl. Phys. 32, 1455–1461 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    F. Dausinger, J. Shen, ISIJ Int. 33(9), 925–933 (1993) CrossRefGoogle Scholar
  15. 15.
    F. Dausinger, RIKEN Rev. 50, 77–82 (2003) Google Scholar
  16. 16.
    Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, K. Watkins, Appl. Surf. Sci. 2009.02.043 (2009) Google Scholar
  17. 17.
    L. Mellor, S. Edwardson, W. Perrie, G. Dearden, K. Watkins, Proc. ICALEO 2009 N105, pp. 1329–1337 (2009) Google Scholar
  18. 18.
    Z. Guosheng, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366–5381 (1982) ADSCrossRefGoogle Scholar
  19. 19.
    I. Ursu, I.N. Mihăilescu, A.M. Prokhorov, V.N. Tokarev, V.I. Konov, J. Appl. Phys. 61, 2445–2457 (1987) ADSCrossRefGoogle Scholar
  20. 20.
    L. Nanai, R. Vajtai, I. Hevesi, R. Laiho, L. Heikkila, Superlattices Microstruct. 11, 435–438 (1992) ADSCrossRefGoogle Scholar
  21. 21.
    P. Mannion, J. Magee, E. Coyne, G.M. O’Connor, Proc. of SPIE, vol. 4876 (2002) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • O. J. Allegre
    • 1
  • W. Perrie
    • 1
  • K. Bauchert
    • 2
  • D. Liu
    • 1
  • S. P. Edwardson
    • 1
  • G. Dearden
    • 1
  • K. G. Watkins
    • 1
  1. 1.Laser Group, School of EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.Boulder Nonlinear Systems, Inc.LafayetteUSA

Personalised recommendations