Applied Physics A

, Volume 107, Issue 2, pp 421–428 | Cite as

Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors

  • Sun Choi
  • Inkyu Park
  • Zhao Hao
  • Hoi-Ying N. Holman
  • Albert P. Pisano


We report a simple and effective method to develop long-term stable, top-down fabricated silicon nanowire (SiNW) pH sensors along with systematic studies on the performance of the sensors. In this work, we fabricated the SiNW pH sensors based on top-down fabrication processes. In order to improve the stability of the sensor performance, the sensors were coated with a passivation layer (PECVD-based silicon nitride) for effective electrical insulation and ion-blocking. The stability, pH sensitivity, and repeatability of the sensor response are critically analyzed with regard to the physics of sensing interface between sample liquid and the sensor surface. Also, trade-off between the stability and pH sensitivity of the sensor response is discussed.


PDMS Silicon Nitride Passivation Layer Plasma Enhance Chemical Vapor Deposition Silicon Nitride Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by the U.S. Department of Energy (DOE, Grant #: DE-AC02-05CH112), a grant (2009K000069) from the Center for Nanoscale Mechatronics & Manufacturing (CNMM), one of the 21st Century Frontier Research Programs, and Basic Science Research Program (Grant #: 2011-0004409), which are supported by Ministry of Education, Science and Technology, Korea. S. Choi thanks for his graduate fellowship from the Samsung Scholarship Foundation.


  1. 1.
    G. Zheng, W. Lu, S. Jin, C.M. Lieber, Adv. Mater. 16, 1890–1893 (2004) CrossRefGoogle Scholar
  2. 2.
    F. Patolsky, G. Zheng, C.M. Lieber, Anal. Chem. 78, 4260–4269 (2006) CrossRefGoogle Scholar
  3. 3.
    Z. Li, B. Rajendran, T.I. Kamins, X. Li, Y. Chen, R.S. Williams, Appl. Phys. A, Mater. Sci. Process. 80, 1257–1263 (2005) CrossRefGoogle Scholar
  4. 4.
    I. Park, Z. Li, X. Li, A.P. Pisano, R.S. Williams, Biosens. Bioelectron. 22, 2065–2070 (2007) CrossRefGoogle Scholar
  5. 5.
    Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams, Nano Lett. 4, 245–247 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    L.T. Canham, Nanotechnology 18, 185704 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    W.U. Wang, C. Chen, K.-h. Lin, Y. Fang, C.M. Lieber, Proc. Natl. Acad. Sci. USA 102, 3208–3212 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Cui, C.M. Lieber, Science 291, 851–853 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    I. Park, Z. Li, A.P. Pisano, R.S. Williams, Nanotechnology 21, 015501 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley, H. Razavi, A. Javey, Nano Lett. 8, 20–25 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    D.R. Kim, C.H. Lee, X. Zheng, Nano Lett. 9, 1984–1988 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    D.W.-G. Alexander, Nanotechnology 17, 4986 (2006) CrossRefGoogle Scholar
  13. 13.
    G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Nat. Biotechnol. 23, 1294–1301 (2005) CrossRefGoogle Scholar
  14. 14.
    P.J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, J. Liphardt, Nat. Mater. 5, 97–101 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    D.K. Schroder, Semiconductor Material and Device Characterization (IEEE Press/Wiley, Hoboken, 2006) Google Scholar
  16. 16.
    J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, R. Murphy, Nat. Nanotechnol. 5, 225–229 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    B.G. Streetman, S. Banerjee, Solid State Electronic Devices (Pearson/Prentice Hall, Upper Saddle River, 2006) Google Scholar
  18. 18.
    P.R. Nair, M.A. Alam, Performance Limits of Nanobiosensors, vol. 88 (AIP, New York, 2006) Google Scholar
  19. 19.
    D. Fink, J. Krauser, D. Nagengast, T.A. Murphy, J. Erxmeier, L. Palmetshofer, D. Bräunig, A. Weidinger, Appl. Phys. A, Mater. Sci. Process. 61, 381–388 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    M. Yuqing, G. Jianguo, C. Jianrong, Biotechnol. Adv. 21, 527–534 (2003) CrossRefGoogle Scholar
  21. 21.
    L. Bousse, D. Hafeman, N. Tran, Sens. Actuators B, Chem. 1, 361–367 (1990) CrossRefGoogle Scholar
  22. 22.
    L. Bousse, S. Mostarshed, B. van der Schoot, N.F. de Rooij, Sens. Actuators B, Chem. 17, 157–164 (1994) CrossRefGoogle Scholar
  23. 23.
    L. Bousse, H.H. van den Vlekkert, N.F. de Rooij, Sens. Actuators B, Chem. 2, 103–110 (1990) CrossRefGoogle Scholar
  24. 24.
    R. Kenhold, H. Ryssel, Sens. Actuators B, Chem. 68, 307–312 (2000) CrossRefGoogle Scholar
  25. 25.
    M.J. Schoning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordos, H. Ltith, Sens. Actuators B, Chem. 35, 228–233 (1996) CrossRefGoogle Scholar
  26. 26.
    J. Chou, Y. Tseng, Proc. SPIE 4078, 793 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    G.T. Yu, S.K. Yen, Surf. Coat. Technol. 166, 195–200 (2003) CrossRefGoogle Scholar
  28. 28.
    G.C. Yu, S.K. Yen, Appl. Surf. Sci. 201, 204–207 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    N.F. de Rooij, P. Bergveld, Thin Solid Films 71, 327–331 (1980) CrossRefGoogle Scholar
  30. 30.
    J.C. Knights, R.A. Lujan, M.P. Rosenblum, R.A. Street, D.K. Bieglesen, J.A. Reimer, Appl. Phys. Lett. 38, 331–333 (1981) ADSCrossRefGoogle Scholar
  31. 31.
    L. Bousse, P. Bergveld, Sens. Actuators 6, 65–78 (1984) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Berkeley Sensor and Actuator Center (BSAC)University of California at BerkeleyBerkeleyUSA
  2. 2.Ecology Department, Earth Sciences Division, Lawrence Berkeley National LaboratoryUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations