Advertisement

Applied Physics A

, Volume 107, Issue 1, pp 49–54 | Cite as

Optically tunable plasmonic color filters

  • Y. J. Liu
  • G. Y. Si
  • E. S. P. Leong
  • B. Wang
  • A. J. Danner
  • X. C. Yuan
  • J. H. Teng
Invited paper

Abstract

We fabricated sub-wavelength patterned gold plasmonic nanostructures on a quartz substrate through the focused ion beam (FIB) technique. The perforated gold film demonstrated optical transmission peaks in the visible range, which therefore can be used as a plasmonic color filter. Furthermore, by integrating a layer of photoresponsive liquid crystals (LCs) with the gold nanostructure to form a hybrid system, we observed a red-shift of transmission peak wavelength. More importantly, the peak intensity can be further enhanced more than 10% in transmittance due to the refractive index match of the media on both sides of it. By optically pumping the hybrid system using a UV light, nematic−isotropic phase transition of the LCs was achieved, thus changing the effective refractive index experienced by the impinging light. Due to the refractive index change, the transmission peak intensity was modulated accordingly. As a result, an optically tunable plasmonic color filter was achieved. This kind of color filters could be potentially applied to many applications, such as complementary metal-oxide-semiconductor (CMOS) image sensors, liquid crystal display devices, light emitting diodes, etc.

Keywords

Hybrid System Azobenzene Effective Refractive Index BMAB Plasmonic Nanostructures 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by Agency for Science, Technology, and Research (A*STAR), under the Grant Nos. 0921540099 and 0921540098.

References

  1. 1.
    H. Raether, Surface Plasmons on Smooth and Tough Surfaces and on Gratings (Springer, Berlin, 1988) Google Scholar
  2. 2.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    Y.J. Liu, Q.Z. Hao, J.S.T. Smalley, J. Liou, I.C. Khoo, T.J. Huang, A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Appl. Phys. Lett. 97, 091101 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    Y.J. Liu, Y.B. Zheng, J. Liou, I.-K. Chiang, I.C. Khoo, T.J. Huang, All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nanodisk arrays. J. Phys. Chem. C 115, 7717–7722 (2011) CrossRefGoogle Scholar
  6. 6.
    C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    H.S. Lee, Y.T. Yoon, S.S. Lee, S.H. Kim, K.D. Lee, Color filter based on a subwavelength patterned metal grating. Opt. Express 15, 15457–15463 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    E. Laux, C. Genet, T. Skauli, T.W. Ebbesen, Plasmonic photon sorters for spectral and polarimetric imaging. Nat. Photonics 2, 161–164 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    K. Diest, J.A. Dionne, M. Spain, H.A. Atwater, Tunable color filters based on metal-insulator-metal resonators. Nano Lett. 9, 2579–2583 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    T. Xu, Y.-K. Wu, X.G. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution color filtering and spectral imaging. Nat. Commun. 1, 59 (2010) Google Scholar
  11. 11.
    E.S.P. Leong, Y.J. Liu, B. Wang, J.H. Teng, Effect of surface morphology on optical properties in metal-dielectric-metal thin film systems. ACS Appl. Mater. Interfaces 3, 1148–1153 (2011) CrossRefGoogle Scholar
  12. 12.
    Y.J. Liu, Y.B. Zheng, J.J. Shi, H. Huang, T.R. Walker, T.J. Huang, Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Opt. Lett. 34, 2351–2353 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Y.J. Liu, H.T. Dai, X.W. Sun, Holographic fabrication of azo-dye-functionalized photonic structures. J. Mater. Chem. 21, 2982–2986 (2011) CrossRefGoogle Scholar
  14. 14.
    K.G. Yager, C.J. Barrett, Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol. A, Chem. 182, 250–261 (2006) CrossRefGoogle Scholar
  15. 15.
    A. Mooradian, Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969) ADSCrossRefGoogle Scholar
  16. 16.
    G.T. Boyd, Z.H. Yu, Y.R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923–7936 (1986) ADSCrossRefGoogle Scholar
  17. 17.
    M. Xiao, N. Rakov, Surface propagation with a large spectral red-shift on a gold thin film containing subwavelength holes. Phys. Lett. A 309, 452–456 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    Y.J. Liu, E.S.P. Leong, B. Wang, J.H. Teng, Optical transmission enhancement and tuning by overlaying liquid crystals on a gold film with patterned nanoholes. Plasmonics 6, 659–664 (2011) CrossRefGoogle Scholar
  19. 19.
    M. Takei, H. Yui, Y. Hirose, T. Sawada, Femtosecond time-resolved spectroscopy of photoisomerization of methyl orange in cyclodextrincs. J. Phys. Chem. A 105, 11395–11399 (2001) CrossRefGoogle Scholar
  20. 20.
    I.C. Khoo, J.-H. Park, J.D. Liou, Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal. J. Opt. Soc. Am. B 25, 1931–1937 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Y. J. Liu
    • 1
  • G. Y. Si
    • 2
  • E. S. P. Leong
    • 1
  • B. Wang
    • 1
  • A. J. Danner
    • 2
  • X. C. Yuan
    • 3
  • J. H. Teng
    • 1
  1. 1.Institute of Materials Research and EngineeringAgency for Science Technology and Research (A*STAR)SingaporeSingapore
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Institute of Modern Optics, Key Laboratory of Optoelectronic Information Science & Technology, Ministry of Education of ChinaNankai UniversityTianjinChina

Personalised recommendations