Applied Physics A

, Volume 106, Issue 4, pp 995–1004 | Cite as

Optical transmission and reflection of aluminum film irradiated by nanosecond laser beam and experimental studying of phase-explosion

  • M. H. MahdiehEmail author
  • H. Hosseini Shokoh


In this paper we present evidence for a phase explosion during the laser-induced ablation process by studying the optical reflectivity of the ablated plume. The ablation was produced by irradiating thin film aluminum coated on a quartz substrate with a single pulse laser beam in ambient air. The laser pulse was provided by the second harmonic of a Q-switched Nd:YAG laser with ∼10 ns pulse duration. The transmission of a low power He–Ne laser beam through the hot ablated material plume and its reflection (from the front surface, and rear surface of aluminum film) were also monitored during the duration of the ablation event. The results show that the front surface reflectivity is enhanced at an early time of ablation which is described as strong evidence for the creation of a phase explosion in this process.


Front Surface Probe Beam Laser Fluence Rear Surface Transmitted Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    R. Eason, Pulsed Laser Deposition of Thin Films (Wiley, New York, 2007) Google Scholar
  3. 3.
    J.F. Ready, LIA Handbook of Laser Material Processing (LIA Publishing, Berlin, 2001) Google Scholar
  4. 4.
    M.F. Becker, J.R. Brock, H. Cai, D.E. Henneke, J.W. Keto, J. Lee, W.T. Nichols, H.D. Glicksman, Metal nanoparticles generated by laser ablation. Nanostruct. Mater. 10(5), 853–863 (1998) CrossRefGoogle Scholar
  5. 5.
    A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Laser ablation for analytical sampling: what can we learn from modeling? Spectrochim. Acta, Part B, At. Spectrosc. 58(11), 1867–1893 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    V.L. Zhigilei, L. Zhibin, S.D. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892–11906 (2009) CrossRefGoogle Scholar
  7. 7.
    A. Miotello, R. Kelly, Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A 69, S67–S73 (1999) ADSGoogle Scholar
  8. 8.
    M.M. Martynyuk, Vaporization and boiling of liquid metal in an exploding wire. Sov. Phys. Tech. Phys. 19, 793–797 (1974) ADSGoogle Scholar
  9. 9.
    W. Fucke, U. Seydel, Improved experimental determination of critical-point data for tungsten. High Temp., High Press. 12, 419–432 (1980) Google Scholar
  10. 10.
    L.V. Zhigilei, Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl. Phys. A 76, 339–350 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    P.A. Davies, A guide to the evaluation of condensed phase explosions. J. Hazard. Mater. 33(1), 1–33 (1993) CrossRefGoogle Scholar
  12. 12.
    A. Miotello, R. Kelly, Critical assessment of thermal models for laser sputtering at high fluence. Appl. Phys. Lett. 67(24), 3535–3537 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    A. Mele, A. Giardini Guidoni, R. Kelly, C. Flamini, S. Orlando, Laser ablation of metals: analysis of surface heating and plume expansion experiments. Appl. Surf. Sci. 109–110, 584–590 (1997) CrossRefGoogle Scholar
  14. 14.
    R. Kelly, A. Miotello, Comments on explosive mechanisms of laser sputtering. Appl. Surf. Sci. 96–98, 205–215 (1996) CrossRefGoogle Scholar
  15. 15.
    C. Porneala, D.A. Willis, Observation of nanosecond laser-induced phase explosion in aluminum. Appl. Phys. Lett. 89, 21 (2006) CrossRefGoogle Scholar
  16. 16.
    J.H. Yoo, S.H. Jeong, X.L. Mao, R. Greif, R. E Russo, Evidence for phase explosion and generation of large particles during high power laser ablation of silicon. Appl. Phys. Lett. 76(6), 783–785 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl. Phys. A 73, 199–208 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    Q. Lu, S.S. Mao, X. Mao, R.E. Russo, Delayed phase explosion during high-power nanosecond laser ablation of silicon. Appl. Phys. Lett. 80, 3072–3074 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    K.H. Song, X. Xu, Explosive phase transformation in excimer laser ablation. Appl. Surf. Sci. 127–129, 111–116 (1998) CrossRefGoogle Scholar
  20. 20.
    J.H. Yoo, O.V. Borisov, X. Mao, R.E. Russo, Existence of phase explosion during laser ablation and its effects on inductively coupled plasma-mass spectrometry. Anal. Chem. 73, 2288–2293 (2001) CrossRefGoogle Scholar
  21. 21.
    Q. Lu, Thermodynamic evolution of phase explosion during high power nanosecond laser ablation. Phys. Rev. E 67, 016410 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    C. Porneala, David A. Willis, Time-resolved dynamics of nanosecond laser-induced phase explosion. J. Phys. D, Appl. Phys. 42, 155503 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    K.H. Song, X. Xu, Explosive phase transformations in excimer laser ablation. Appl. Surf. Sci. 127–129, 111–116 (1998) CrossRefGoogle Scholar
  24. 24.
    J.H. Yoo, S.H. Jeong, R. Greif, R.E. Russo, Explosive change in crater properties during high power nanosecond laser ablation of silicon. J. Appl. Phys. 88, 1638–1649 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    J.M. Fishburn, M.J. Withford, D.W. Coutts, J.A. Piper, Study of the fluence dependent interplay between laser induced material removal mechanisms in metals: Vaporization, melt displacement and melt ejection. Appl. Surf. Sci. 252, 5182–5188 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    G. Callies, P. Berger, H. Hugel, Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation. J. Phys. D, Appl. Phys. 28, 794–806 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    T. Tsujia, Y. Tsuboi, N. Kitamura, M. Tsujia, Microsecond-resolved imaging of laser ablation at solid–liquid interface: investigation of formation process of nano-size metal colloids. Appl. Surf. Sci. 229, 365–371 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    J.F. Ready, Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses. IEEE J. Quantum Electron. QE-12(2), 137–142 (1976) ADSCrossRefGoogle Scholar
  29. 29.
    A.V. Bessarab, N.V. Zhidkov, S.B. Kormer, D.V. Pavlov, A.I. Funtikov, Measurement of the reflectivity of metal mirrors acted on by laser radiation. Sov. J. Quantum Electron. 8(2), 325–330 (1978) ADSCrossRefGoogle Scholar
  30. 30.
    A.B. Bullocka, P.R. Bolton, F.J. Mayer, Time-integrated reflectivity of laser-induced back-ablated aluminum thin film targets. J. Appl. Phys. 82(4), 1828 (1997) ADSCrossRefGoogle Scholar
  31. 31.
    A.V. Bessarab, N.V. Zhidkov, S.B. Kormer, D.V. Pavlov, A.I. Funtikov, Measurement of the reflectivity of metal mirrors acted on by laser radiation. Sov. J. Quantum Electron. 8(2), 188–191 (1978) ADSCrossRefGoogle Scholar
  32. 32.
    M.H. Mahdieh, T.A. Hall, Optical reflectivity of dense plasmas produced by laser driven shock waves. J. Phys. D, Appl. Phys. 30, 588–592 (1997) ADSCrossRefGoogle Scholar
  33. 33.
    R. Jordanand, J.G. Lunney, Investigation of excimer laser ablation of iron. Appl. Surf. Sci. 127–129, 968–972 (1998) CrossRefGoogle Scholar
  34. 34.
    N. Booth, M.H. Edwards, Z. Zhai, G.J. Tallents, T. Dzelzainis, R. Ferrari, C.L.S. Lewis, G. Gregori, D. Neely, Ablation measurements using Ni-like Ag X-ray laser transmission, in Springer Proceedings in Physic, VII, vol. 130 (2009), pp. 366–372 Google Scholar
  35. 35.
    G.J. Tallents, M.H. Edwards, D. Whittaker, N. Booth, H. Huang, P. Mistry, G.J. Pert, B. Rus, T. Mocek, M. Koslovà et al., Plasma opacity and laser ablation measurements using X-ray lasers, in Springer Proceedings in Physics, vol. 115 (2007), pp. 445–454, Part 6 Google Scholar
  36. 36.
    W. Guan, T. Matsumoto, T. Kawai, Time- and space-resolved diagnosis of laser ablation plasma probed by optical transmittance. Chem. Phys. Lett. 291(1–2), 161–166 (1998) ADSCrossRefGoogle Scholar
  37. 37.
    M.H. Mahdieh, H. Hosseini Shokoh, Optical opacity and reflectivity of plasma produced by irradiation of aluminum thin film by nanosecond pulsed laser, in SPIE, vol. 7751 (2010) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PhysicsIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations