Applied Physics A

, Volume 106, Issue 3, pp 489–499 | Cite as

Analysis of ultrafast X-ray diffraction data in a linear-chain model of the lattice dynamics

  • M. Herzog
  • D. Schick
  • P. Gaal
  • R. Shayduk
  • C. v. Korff Schmising
  • M. Bargheer
Rapid communication

Abstract

We present ultrafast X-ray diffraction (UXRD) experiments which sensitively probe impulsively excited acoustic phonons propagating in a SrRuO3/SrTiO3 superlattice and further into the substrate. These findings are discussed together with previous UXRD results (Herzog et al. in Appl. Phys. Lett. 96, 161906, 2010; Woerner et al. in Appl. Phys. A 96, 83, 2009; v. Korff Schmising in Phys. Rev. B 78, 060404(R), 2008 and in Appl. Phys. B 88, 1, 2007) using a normal-mode analysis of a linear-chain model of masses and springs, thus identifying them as linear-response phenomena. We point out the direct correspondence of calculated observables with X-ray signals. In this framework the complex lattice motion turns out to result from an interference of vibrational eigenmodes of the coupled system of nanolayers and substrate. UXRD in principle selectively measures the lattice motion occurring with a specific wavevector, however, each Bragg reflection only measures the amplitude of a delocalized phonon mode in a spatially localized region, determined by the nanocomposition of the sample or the extinction depth of X-rays. This leads to a decay of experimental signals although the excited modes survive.

References

  1. 1.
    M. Herzog, W. Leitenberger, R. Shayduk, R.M. van der Veen, C.J. Milne, S.L. Johnson, I. Vrejoiu, M. Alexe, D. Hesse, M. Bargheer, Ultrafast manipulation of hard X-rays by efficient Bragg switches. Appl. Phys. Lett. 96, 161906 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    M. Woerner, C. v. Korff Schmising, M. Bargheer, N. Zhavoronkov, I. Vrejoiu, D. Hesse, M. Alexe, T. Elsaesser, Ultrafast structural dynamics of perovskite superlattices. Appl. Phys. A 96, 83 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    C. v. Korff Schmising, A. Harpoeth, N. Zhavoronkov, Z. Ansari, C. Aku-Leh, M. Woerner, T. Elsaesser, M. Bargheer, M. Schmidbauer, I. Vrejoiu, D. Hesse, M. Alexe, Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404(R) (2008) ADSCrossRefGoogle Scholar
  4. 4.
    C. v. Korff Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, M. Alexe, Accurate time delay determination for femtosecond X-ray diffraction experiments. Appl. Phys. B 88, 1 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    M. Cardona, Light Scattering in Solids V Superlattices and Other Microstructures, 2nd edn. Topics in Applied Physics (Springer, Berlin, 1989) CrossRefGoogle Scholar
  6. 6.
    C. Colvard, T.A. Gant, M.V. Klein, R. Merlin, R. Fischer, H. Morkoc, A.C. Gossard, Folded acoustic and quantized optic phonons in (gaal)as superlattices. Phys. Rev. B 31(4), 2080 (1985) ADSCrossRefGoogle Scholar
  7. 7.
    M. Bargheer, N. Zhavoronkov, Y. Gritsai, J.C. Woo, D.S. Kim, M. Woerner, T. Elsaesser, Science 306, 1771 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    C. v. Korff Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, M. Alexe, Coupled ultrafast lattice and polarization dynamics in ferroelectric nanolayers. Phys. Rev. Lett. 98(25), 257601 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    S. Yamanaka, T. Maekawa, H. Muta, T. Matsuda, S. Kobayashi, K. Kurosaki, Thermophysical properties of SrHfO3 and SrRuO3. J. Solid State Chem. 177, 3484 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    Y.H. Ren, M. Trigo, R. Merlin, V. Adyam, Q. Li, Generation and detection of coherent longitudinal acoustic phonons in the La0.67Sr0.33MnO3 thin films by femtosecond light pulses. Appl. Phys. Lett. 90, 251918 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    Bauer, Multilayers, 2nd edn. (Springer, Berlin, 1998) Google Scholar
  12. 12.
    C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C.W. Siders, F. Rksi, J.A. Squier, B.C. Walker, K.R. Wilson, C.P.J. Barty, Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398(6725), 310–312 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Lindenberg, I. Kang, S.L. Johnson, T. Missalla, P.A. Heimann, Z. Chang, J. Larsson, P.H. Bucksbaum, H.C. Kapteyn, H.A. Padmore, R.W. Lee, J.S. Wark, R.W. Falcone, Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition. Phys. Rev. Lett. 84(1), 111–114 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    D.A. Reis, M.F. DeCamp, P.H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M.M. Murnane, J. Larsson, T. Missalla, J.S. Wark, Probing impulsive strain propagation with X-ray pulses. Phys. Rev. Lett. 86(14), 3072–3075 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler, Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Phys. Rev. Lett. 87(22), 225701 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    M. Trigo, Y.M. Sheu, D.A. Arms, J. Chen, S. Ghimire, R.S. Goldman, E. Landahl, R. Merlin, E. Peterson, M. Reason, D.A. Reis, Probing unfolded acoustic phonons with X-rays. Phys. Rev. Lett. 101(2), 025505 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    A. Cavalleri, C.W. Siders, F.L.H. Brown, D.M. Leitner, C. Tóth, J.A. Squier, C.P.J. Barty, K.R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde, M. Kammler, Anharmonic lattice dynamics in germanium measured with ultrafast X-ray diffraction. Phys. Rev. Lett. 85(3), 586–589 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    J. Larsson, A. Allen, P.H. Bucksbaum, R.W. Falcone, A. Lindenberg, G. Naylor, T. Missalla, D.A. Reis, K. Scheidt, A. Sjögren, P. Sondhauss, M. Wulff, J.S. Wark, Picosecond X-ray diffraction studies of laser-excited acoustic phonons in insb. Appl. Phys. A 75, 467–478 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    F. Zamponi, Z. Ansari, C. v. Korff Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, M. Haschke, Femtosecond hard X-ray plasma sources with a kilohertz repetition rate. Appl. Phys. A 96, 51 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    P. Beaud, S.L. Johnson, A. Streun, R. Abela, D. Abramsohn, D. Grolimund, F. Krasniqi, T. Schmidt, V. Schlott, G. Ingold, Spatiotemporal stability of a femtosecond hard–X-ray undulator source studied by control of coherent optical phonons. Phys. Rev. Lett. 99(17), 174801 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    J. Li, R. Clinite, X. Wang, J. Cao, Simulation of ultrafast heating induced structural dynamics using a one-dimensional spring model. Phys. Rev. B 80(1), 014304 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    P. Kostic, Y. Okada, N.C. Collins, Z. Schlesinger, J.W. Reiner, L. Klein, A. Kapitulnik, T.H. Geballe, M.R. Beasley, Non-Fermi-liquid behavior of srruo3: Evidence from infrared conductivity. Phys. Rev. Lett. 81(12), 2498 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    M. Bargheer, N. Zhavoronkov, J.C. Woo, D.S. Kim, M. Woerner, T. Elsaesser, Excitation mechanisms of coherent phonons unravelled by femtosecond X-ray diffraction. Phys. Status Solidi (b) 243(10), 2389 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    S.A. Stepanov, E.A. Kondrashkina, R. Köhler, D.V. Novikov, G. Materlik, S.M. Durbin, Dynamical X-ray diffraction of multilayers and superlattices: Recursion matrix extension to grazing angles. Phys. Rev. B 57(8), 4829–4841 (1998) ADSCrossRefGoogle Scholar
  25. 25.
    N. Gedik, Y. Ding-Shyue, G. Logvenov, I. Bozovic, A.H. Zewail, Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316(5823), 425 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Herzog
    • 1
  • D. Schick
    • 1
  • P. Gaal
    • 1
  • R. Shayduk
    • 2
  • C. v. Korff Schmising
    • 3
  • M. Bargheer
    • 1
    • 2
  1. 1.Institute of Physics and AstronomyUniversity PotsdamPotsdamGermany
  2. 2.Helmholtz-Zentrum Berlin für Materialien und Energie GmbHBerlinGermany
  3. 3.Atomic Physics Division, Department of PhysicsLund UniversityLundSweden

Personalised recommendations