Applied Physics A

, Volume 106, Issue 2, pp 295–307 | Cite as

Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments

  • C. MilianiEmail author
  • F. Rosi
  • A. Daveri
  • B. G. Brunetti
Invited paper


The potential of fibre optic reflection infrared spectroscopy for the non-invasive identification of artists’ pigments is presented. Sixteen different carbonate, sulphate and silicate-based pigments are taken into account considering their wide use during the history of art and their infrared optical properties. The infrared distortions mainly generated by the specular reflection are discussed on the basis of experimental measurements carried out on reference samples. The study on pure materials permitted the definition of marker bands, mainly combination and overtone modes, enhanced by the diffuse reflection component of the light, functional for the non-invasive pigment identification in real artworks. Several case studies are reported, including wall, easel, canvas paintings and manuscripts from ancient to modern art demonstrating the strengths of the technique on the identification of pigments even in the presence of complex mixtures of both organic (binders, varnishes) and inorganic (supports, fillers and other pigments) compounds.


Combination Band Wall Painting Cerussite Mural Painting Overtone Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work has been carried out through the support of the EU within the 6th FP (Contract Eu-ARTECH, RII3-CT-2004-506171) and the 7th FP (Contract CHARISMA nr. 228330).


  1. 1.
    M.R. Derrick, D. Stulik, J.M. Landry, Infrared Spectroscopy (Getty Conservation Institute, Los Angeles, 1999) Google Scholar
  2. 2.
    F. Casadio, L. Toniolo, J. Cult. Heritage 2, 71 (2001) CrossRefGoogle Scholar
  3. 3.
    R. Mazzeo, S. Prati, M. Quaranta, E. Joseph, E. Kendix, M. Galeotti, Anal. Bioanal. Chem. 392, 65 (2008) CrossRefGoogle Scholar
  4. 4.
    C. Miliani, F. Rosi, B.G. Brunetti, A. Sgamellotti, Acc. Chem. Res. 43, 728 (2010) CrossRefGoogle Scholar
  5. 5. (last accessed 21/03/2011)
  6. 6. (last accessed 21/03/2011)
  7. 7.
    W.R. Scott, On site non destructive mid-IR spectroscopy of plastics in museum objects using a portable FT-IR spectrometer with fiber optics probe, in Mat. Res. Soc. Symp., V, December 3–5, Boston, Massachusetts, USA (1996) Google Scholar
  8. 8.
    R.S. Williams, in The Sixth Infrared and Raman Users Group Conference, Florence 2004, ed. by M. Picollo (Il Prato, Saonara, 2005), pp. 170–177 Google Scholar
  9. 9.
    M. Fabbri, M. Picollo, S. Porcinai, M. Bacci, Appl. Spectrosc. 55, 420 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    M. Fabbri, M. Picollo, S. Porcinai, M. Bacci, Appl. Spectrosc. 55, 428 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    M. Bacci, M. Fabbri, M. Picollo, S. Porcinai, Anal. Chim. Acta 446, 15 (2001) CrossRefGoogle Scholar
  12. 12.
    F. Rosi, A. Daveri, C. Miliani, G. Verri, P. Benedetti, F. Piqué, B.G. Brunetti, A. Sgamellotti, Anal. Bioanal. Chem. 395, 2097 (2009) CrossRefGoogle Scholar
  13. 13.
    R. Ploeger, O. Chiantore, D. Scalarone, T. Poli, Appl. Spectrosc. 65, 429 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    T. Poli, O. Chiantore, M. Nervo, A. Piccirillo, Anal. Bioanal. Chem. doi: 10.1007/s00216-011-4834-5 (2011) zbMATHGoogle Scholar
  15. 15.
    C. Ricci, C. Miliani, B.G. Brunetti, A. Sgamellotti, Talanta 69, 1221 (2006) CrossRefGoogle Scholar
  16. 16.
    F. Rosi, A. Daveri, B. Doherty, S. Nazzareni, B.G. Brunetti, A. Sgamellotti, C. Miliani, Appl. Spectrosc. 64, 956 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    P. Griffiths, J.A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd edn. (Wiley, New York, 2007) CrossRefGoogle Scholar
  18. 18.
    E. Van Nimmen, K. De Clerck, I. Verschuren, K. Gellynck, T. Gheysens, J. Mertens, L. Van Langenhove, Vib. Spectrosc. 46, 63 (2008) CrossRefGoogle Scholar
  19. 19.
    M. Fox, Optical Properties of Solids (Oxford University Press, London, 2010) Google Scholar
  20. 20.
    M. Milosevic, S.L. Berets, Appl. Spectrosc. Rev. 37, 347 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    N. Eastaugh, V. Walsh, T. Chaplin, R. Siddall, Pigment Compendium: A Dictionary and Optical Microscopy of Historic Pigments (Elsevier, Amsterdam, 2008) Google Scholar
  22. 22.
    V.C. Farmer, The Infrared Spectra of Minerals (Mineralogical Society, London, 1974) Google Scholar
  23. 23.
    V. Chu, L. Regev, S. Weiner, E. Boaretto, Journal of Archaeological. Science 35, 905 (2008) Google Scholar
  24. 24.
    M.E. Bottcher, P.L. Gehlken, D.F. Steele, Solid State Ion. 1379, 101 (1997) Google Scholar
  25. 25.
    S. Gunasekaran, G. Anbalagan, S. Pandi, J. Raman Spectrosc. 37, 892 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    C. Haas, J.A.A. Ketelaar, Physica 22, 1286 (1956) ADSCrossRefGoogle Scholar
  27. 27.
    M. Vagnini, C. Miliani, L. Cartechini, P. Rocchi, B.G. Brunetti, A. Sgamellotti, Anal. Bioanal. Chem. 395, 2107 (2009) CrossRefGoogle Scholar
  28. 28.
    F. Rosi, C. Miliani, A. Burnstock, B.G. Brunetti, A. Sgamellotti, Appl. Phys. A 89, 849 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    C. Miliani, F. Rosi, C. Ricci, A. Sassolini, F. Presciutti, C. Clementi, A. Sgamellotti, C. Seccaroni, P. Moioli, in Proceedings of the Workshop “Raphael Painting Technique: Working Practice before Rome”, London, England. Quaderni di Kermes (Nardini, Firenze, 2007) Google Scholar
  30. 30.
    F. Rosi, C. Miliani, C. Clementi, K. Kahrim, F. Presciutti, M. Vagnini, V. Manuali, A. Daveri, L. Cartechini, B.G. Brunetti, A. Sgamellotti, Appl. Phys. A 100, 613 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    C. Miliani, B. Doherty, A. Daveri, A. Loesch, H. Ulbricht, B.G. Brunetti, A. Sgamellotti, Spectrochim. Acta A-M 73, 587 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    C. Miliani, F. Rosi, I. Borgia, P. Benedetti, B.G. Brunetti, A. Sgamellotti, Appl. Spectrosc. 61, 293 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    C. Miliani, D. Buti, F. Presciutti, C. Clementi, A. Romani, A. Sgamellotti, D. Domenici, J. Arch. Sci. 39(3), 672–679 (2012) CrossRefGoogle Scholar
  34. 34.
    A. Duran, J. Castaing, P. Walter, Appl. Phys. A 99, 333 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    T.T. Nguyen, L.J. Janik, M. Raupach, Aust. J. Soil Res. 29, 49 (1991) CrossRefGoogle Scholar
  36. 36.
    F. Rosi, D. Daveri, A. Sgamellotti, B.G. Brunetti, C. Miliani, O.P.D. Quaderni (2011, in press) Google Scholar
  37. 37.
    F. Rosi, A. Burnstock, K.J. Van den Berg, C. Miliani, B.G. Brunetti, A. Sgamellotti, Spectrochim. Acta, A 71, 1655 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    C. Miliani, A. Sgamellotti, K. Kahrim, B.G. Brunetti, A. Aldrovandi, M.R. van Bommel, K.J. van den Berg, H. Janssen, ICOM Committee for Conservation (2008) Google Scholar
  39. 39.
    F. Rosi, C. Miliani, C. Clementi, K. Kahrim, F. Presciutti, M. Vagnini, V. Manuali, A. Daveri, L. Cartechini, B.G. Brunetti, A. Sgamellotti, Appl. Phys. A 100, 613 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    C. Miliani, V. Ciocan, A. Sgamellotti, B. Brunetti, in Raffaello: La Rivelazione del Colore. Il Restauro Della Madonna del Cardellino (Edifir, Firenze, 2009) Google Scholar
  41. 41.
    A. Daveri, C. Clementi, F. Presciutti, C. Anselmi, C. Miliani, A. Romani, B.G. Brunetti, A. Sgamellotti, in L’ingegno e la Mano Restaurare il mai Restaurato (Edifir, Firenze, 2009) Google Scholar
  42. 42.
    C. Miliani, A. Daveri, L. Spaabaek, A. Romani, V. Manuali, A. Sgamellotti, B.G. Brunetti, Appl. Phys. A 100, 703 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    J.J. Boon, K. Keune, M. Geldof, K. Mensch, S. Bryan, J.R.J. van Asperen de Boer, Chimia 55, 952 (2001) Google Scholar
  44. 44.
    C. Miliani, A. Daveri, B.G. Brunetti, A. Sgamellotti, Chem. Phys. Lett. 466, 148 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    D. Bikiaris, S. Daniilia, S. Sotiropoulou, O. Katsimbiri, E. Pavlidou, A.P. Moutsatsou, Y. Chryssoulakis, Spectrochim. Acta, A 56, 3 (1999) Google Scholar
  46. 46. (last accessed 21/03/2011)
  47. 47.
    R.L. Frost, U. Johansson, Clays Clay Miner. 46, 466–477 (1998) CrossRefGoogle Scholar
  48. 48.
    J. Madejová, P. Komadel, Clays Clay Miner. 49, 410–432 (2001) CrossRefGoogle Scholar
  49. 49.
    D. Hradil, T. Grygar, J. Hradilová, P. Bezdička, Appl. Clay Sci. 22, 223 (2003) CrossRefGoogle Scholar
  50. 50.
    F. Ospitali, D. Bersani, G. Di Lonardo, P.P. Lottici, J. Raman Spectrosc. 39, 1066 (2008) ADSCrossRefGoogle Scholar
  51. 51.
    I. Aliatis, D. Bersani, E. Campani, A. Casoli, P.P. Lottici, S. Mantovana, I.G. Marino, F. Ospitali, Spectrochim. Acta A 73, 532 (2009) ADSCrossRefGoogle Scholar
  52. 52.
    D. Hradil, A. Píšková, J. Hradilová, P. Bezdička, G. Lehrberger, S. Gerzer, Archaeometry (2010). doi: 10.1111/j.1475-4754.2010.00554.x Google Scholar
  53. 53.
    M. Bacci, M. Picollo, Stud. Conserv. 41, 136 (1996) CrossRefGoogle Scholar
  54. 54.
    G.A. Mazzocchin, F. Agnolia, M. Salvadori, Talanta 64, 732 (2004) CrossRefGoogle Scholar
  55. 55.
    I. Hassan, R.C. Peterson, H.D. Grundy, Acta Crystallogr. C 41, 827 (1985) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Miliani
    • 1
    • 2
    Email author
  • F. Rosi
    • 1
    • 2
  • A. Daveri
    • 2
  • B. G. Brunetti
    • 1
    • 2
  1. 1.Istituto CNR di Scienze e Tecnologie Molecolari (CNR-ISTM), c/o Dipartimento di ChimicaUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Centro SMAArt, c/o Dipartimento di ChimicaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations