Advertisement

Applied Physics A

, Volume 106, Issue 4, pp 885–891 | Cite as

Numerical simulation of process dynamics during laser beam drilling with short pulses

  • Karl-Heinz LeitzEmail author
  • Holger Koch
  • Andreas Otto
  • Michael Schmidt
Article

Abstract

In the last years, laser beam drilling became increasingly important for many technical applications as it allows the contactless production of high quality drill holes. So far, mainly short laser pulses are of industrial relevance, as they offer a good compromise between precision and efficiency and combine high ablation efficiency with low thermal damage of the workpiece. Laser beam drilling in this pulse length range is still a highly thermal process. There are two ablation mechanisms: evaporation and melt expulsion. In order to achieve high quality processing results, a basic process understanding is absolutely necessary. Yet, process observations in laser beam drilling suffer from both the short time scales and the restricted accessibility of the interaction zone. Numerical simulations offer the possibility to acquire additional knowledge of the process as they allow a direct look into the drill hole during the ablation process. In this contribution, a numerical finite volume multi-phase simulation model for laser beam drilling with short laser pulses shall be presented. The model is applied for a basic study of the ablation process with μs and ns laser pulses. The obtained results show good qualitative correspondence with experimental data.

Keywords

Drill Hole Drilling Process Burr Formation Numerical Simulation Model Ablation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge funding of the project “Gezielte lokale Sub-100-nm-Strukturierung durch ultrakurze Laserpulse mithilfe von mit einer optischen Pinzette positionierten Kolloiden unter Ausnutzung von Nahfeldeffekten” within the DFG priority programme 1327 “Optisch erzeugte Sub-100-nm Strukturen für biomedizinische und technische Applikationen” and the funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German National Science Foundation (DFG) in the framework of the excellence initiative.

References

  1. 1.
    S. Preuss, E. Matthias, M. Stuke, Appl. Phys. A 59 (1994) Google Scholar
  2. 2.
    A. Ruf, Modellierung des Perkussionsbohrens von Metallen mit kurz- und ultrakurz gepulsten Lasern (Herbert Utz Verlag, Munich, 2004) Google Scholar
  3. 3.
    F. Dausinger, LTJ Nr. 1 (2004) Google Scholar
  4. 4.
    D. Breitling, A. Ruf, F. Dausinger, Proc. SPIE 5339 (2005) Google Scholar
  5. 5.
    C.Y. Chien, M.C. Gupta, Appl. Phys. A 81 (2005) Google Scholar
  6. 6.
    A. Michalowski, D. Walter, F. Dausinger, J. Laser Micro Nanoeng. 3(3) (2008) Google Scholar
  7. 7.
    T. Lehecka, A. Mostovych, J. Thomas, Appl. Phys. A 92 (2008) Google Scholar
  8. 8.
    T. Bauer, J. Radtke, J. König, in Proceedings of the LAMP 2009 (2009) Google Scholar
  9. 9.
    J. König, T. Bauer, Proc. SPIE 7925 (2011) Google Scholar
  10. 10.
    S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61 (1995) Google Scholar
  11. 11.
    M. Dirscherl, Ultrakurzpulslaser—Grundlagen und Anwendungen (Bayerisches Laserzentrum, Erlangen, 2005) Google Scholar
  12. 12.
    K.-H. Leitz, H. Koch, A. Otto, M. Schmidt, in Proceedings of the LIM 2009 (2009) Google Scholar
  13. 13.
    S. Preuss, M. Späth, Y. Zhang, M. Stuke, Appl. Phys. Lett 62(23) (1993) Google Scholar
  14. 14.
    A. Schoonderbeek, C.A. Biesheuvel, R.M. Hofstra, K.-J. Boller, J. Meijer, Appl. Phys. A 80 (2005) Google Scholar
  15. 15.
    A. Michalowski, D. Walter, P. Berger, F. Dausinger, in Proceedings of the LIM 2007 (2007) Google Scholar
  16. 16.
    D. Walter, A. Michalowski, R. Gauch, F. Dausinger, in Proceedings of the LIM 2007 (2007) Google Scholar
  17. 17.
    S. Amoruso, R. Bruzesse, C. Pagano, X. Wang, Appl. Phys. A 89 (2007) Google Scholar
  18. 18.
    A. Michalowski, R. Weber, R. Graf, in Proceedings of the LIM 2009 (2009) Google Scholar
  19. 19.
    S. Döring, S. Richter, S. Nolte, A. Tünnermann, Opt. Express 19(18) (2010) Google Scholar
  20. 20.
    S. Döring, S. Richter, S. Nolte, A. Tünnermann, Proc. SPIE 7920 (2011) Google Scholar
  21. 21.
    S. Döring, S. Richter, A. Tünnermann, S. Nolte, Appl. Phys. A 105 (2011) Google Scholar
  22. 22.
    R.G. Evans, A.R. Bell, B.J. MacGowan, J. Phys. D., Appl. Phys. 15 (1982) Google Scholar
  23. 23.
    C.L. Chan, J. Mazumder, J. Appl. Phys. 62(11) (1987) Google Scholar
  24. 24.
    C.D. Boley, in International Conference on Applications of Lasers in Electro-Optics (1994) Google Scholar
  25. 25.
    M.F. Modest, Int. J. Heat Mass Transf. 39(2) (1996) Google Scholar
  26. 26.
    J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, J. Appl. Phys. 78(7) (1995) Google Scholar
  27. 27.
    J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, J. Appl. Phys. 79(9) (1996) Google Scholar
  28. 28.
    R.K. Ganesh, W.W. Bowley, R.R. Bellantone, H. Yukap, J. Comput. Phys. 125 (1996) Google Scholar
  29. 29.
    R.K. Ganesh, A. Faghri, Y. Hahn, Int. J. Heat Mass Transf. 40(14) (1997) Google Scholar
  30. 30.
    A. Ruf, D. Breitling, P. Berger, F. Dausinger, H. Hügel, Proc. SPIE 4830 (2003) Google Scholar
  31. 31.
    A. Ruf, F. Berger, F. Dausinger, H. Hügel, in Proceedings of the LIM 2003 (2003) Google Scholar
  32. 32.
    G. Dumitru, V. Romano, H.P. Weber, Appl. Phys. A 79 (2004) Google Scholar
  33. 33.
    C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39 (1981) Google Scholar
  34. 34.
    O. Ubbnik, Numerical prediction of two fluid systems with sharp interfaces, Ph.D. thesis, University of London, 1997 Google Scholar
  35. 35.
    J.M. Dowden, The Mathematics of Thermal Modeling (Chapman & Hall/CRC, Boca Raton, 2001) zbMATHCrossRefGoogle Scholar
  36. 36.
    M.O. Bristeau, R. Glowinski, J. Priaux, Comput. Phys. Rep. 6 (1987) Google Scholar
  37. 37.
    J.M. Dowden, The Theory of Laser Material Processing (Springer, Berlin, 2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Karl-Heinz Leitz
    • 1
    Email author
  • Holger Koch
    • 1
  • Andreas Otto
    • 2
  • Michael Schmidt
    • 1
  1. 1.Chair of Photonic Technologies and Erlangen Graduate School in Advanced Optical Technologies (SAOT)University of Erlangen–NurembergErlangenGermany
  2. 2.Institute for Production Engineering and Laser TechnologyVienna University of TechnologyViennaAustria

Personalised recommendations