Advertisement

Applied Physics A

, Volume 106, Issue 2, pp 325–338 | Cite as

A deep view in cultural heritage—confocal micro X-ray spectroscopy for depth resolved elemental analysis

  • B. Kanngießer
  • W. Malzer
  • I. Mantouvalou
  • D. Sokaras
  • A. G. Karydas
Invited paper

Abstract

Quantitative X-ray fluorescence (XRF) and particle induced X-ray emission (PIXE) techniques have been developed mostly for the elemental analysis of homogeneous bulk or very simple layered materials. Further on, the microprobe version of both techniques is applied for 2D elemental mapping of surface heterogeneities. At typical XRF/PIXE fixed geometries and exciting energies (15–25 keV and 2–3 MeV, respectively), the analytical signal (characteristic X-ray radiation) emanates from a variable but rather extended depth within the analyzed material, according to the exciting probe energy, set-up geometry, specimen matrix composition and analyte. Consequently, the in-depth resolution offered by XRF and PIXE techniques is rather limited for the characterization of materials with micrometer-scale stratigraphy or 3D heterogeneous structures. This difficulty has been over-passed to some extent in the case of an X-ray or charged particle microprobe by creating the so-called confocal geometry. The field of view of the X-ray spectrometer is spatially restricted by a polycapillary X-ray lens within a sensitive microvolume formed by the two inter-sectioned focal regions. The precise scanning of the analyzed specimen through the confocal microvolume results in depth-sensitive measurements, whereas the additional 2D scanning microprobe possibilities render to element-specific 3D spatial resolution (3D micro-XRF and 3D micro-PIXE). These developments have contributed since 2003 to a variety of fields of applications in environmental, material and life sciences. In contrast to other elemental imaging methods, no size restriction of the objects investigated and the non-destructive character of analysis have been found indispensable for cultural heritage (CH) related applications. The review presents a summary of the experimental set-up developments at synchrotron radiation beamlines, particle accelerators and desktop spectrometers that have driven methodological developments and applications of confocal X-ray microscopy including depth profiling speciation studies by means of confocal X-ray absorption near edge structure (XANES) spectroscopy. The solid mathematical formulation developed for the quantitative in-depth elemental analysis of stratified materials is exemplified and depth profile reconstruction techniques are discussed. Selected CH applications related to the characterization of painted layers from paintings and decorated artifacts (enamels, glasses and ceramics), but also from the study of corrosion and patina layers in glass and metals, respectively, are presented. The analytical capabilities, limitations and future perspectives of the two variants of the confocal micro X-ray spectroscopy, 3D micro-XRF and 3D micro-PIXE, with respect to CH applications are critically assessed and discussed.

Keywords

Paint Layer Proton Microprobe Cultural Heritage Object Elemental Depth Profile Polycapillary Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.E. Van Grieken, A.A. Markowicz (eds.), Handbook of X-Ray Spectrometry, 2nd edn. (Dekker, New York, 2002). ISBN 0824706005 Google Scholar
  2. 2.
    B. Beckhoff, B. Kanngießer, N. Langhoff, R. Wedell, H. Wolff (eds.), Handbook of Practical X-Ray Fluorescence Analysis (Springer, Berlin, 2006). ISBN 3-540-28603-9 Google Scholar
  3. 3.
    S.A.E. Johansson, J.L. Campbell, PIXE: A Novel Technique for Elemental Analysis (Wiley, New York, 1988). ISBN 0471920118 Google Scholar
  4. 4.
    B. Kanngießer, W. Malzer, I. Reiche, Nucl. Instrum. Methods Phys. Res. B 211–212, 259 (2003) CrossRefGoogle Scholar
  5. 5.
    G.J. Havrilla, T. Miller, Powder Diffr. 19(2), 119 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    B. Kanngießer, W. Malzer, A. Fuentes Rodriguez, I. Reiche, Spectrochim. Acta B 60, 41 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    A.G. Karydas, D. Sokaras, Ch. Zarkadas, N. Grlj, P. Pelicon, M. Žitnik, R. Schütz, W. Malzer, B. Kanngießer, J. Anal. At. Spectrom. 22, 1260 (2007) CrossRefGoogle Scholar
  8. 8.
    B. Kanngießer, A.G. Karydas, R. Schütz, D. Sokaras, I. Reiche, S. Röhrs, L. Pichon, J. Salomon, Nucl. Instrum. Methods Phys. Res. B 264(2), 383 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    A. Gianoncelli, G. Kourousias, Appl. Phys. A 89, 857 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    R. Cesareo, A. Brunetti, S. Ridolfi, X-Ray Spectrom. 37(4), 309 (2008) CrossRefGoogle Scholar
  11. 11.
    A.G. Karydas, H. Brecoulaki, B. Bourgeois, Ph. Jockey, in Proceedings of 7th International Conference of Association for the Study of Marble and Other Stones in Antiquity. BCH Suppl., vol. 51 (2009), pp. 811–829 Google Scholar
  12. 12.
    A.G. Karydas, Ann. Chim. 97(7), 419 (2007) CrossRefGoogle Scholar
  13. 13.
    C. Neelmeijer, I. Brissaud, T. Calligaro, G. Demortier, A. Hautojärvi, M. Mäder, L. Martinot, M. Schreiner, T. Tuurnala, G. Weber, X-Ray Spectrom. 29(1), 101 (2000) CrossRefGoogle Scholar
  14. 14.
    L. de Viguerie, L. Beck, J. Salomon, L. Pichon, Ph. Walter, Anal. Chem. 81, 7960 (2009) CrossRefGoogle Scholar
  15. 15.
    B. Nsouli, M. Roumié, K. Zahraman, J.P. Thomas, M. Nasreddine, Nucl. Instrum. Methods Phys. Res. B 192, 311 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    J. Miranda, J. Rickards, R. Trejo-Luna, Nucl. Instrum. Methods Phys. Res. B 249, 394 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    A. Denker, J. Opitz-Coutureau, Nucl. Instrum. Methods Phys. Res. B 213, 677 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    J. Dik, K. Janssens, G. Van Der Snickt, L. van der Loeff, K. Rickers, M. Cotte, Anal. Chem. 80(16), 6436 (2008) CrossRefGoogle Scholar
  19. 19.
    K. Janssens, J. Dik, M. Cotte, J. Susini, Acc. Chem. Res. 43(6), 814 (2010) CrossRefGoogle Scholar
  20. 20.
    C. Neelemeijer, W. Wagner, H.P. Schramm, Nucl. Instrum. Methods Phys. Res. B 118, 338 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    C. Neelemeijer, M. Mäder, Nucl. Instrum. Methods Phys. Res. B 189, 293 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    P.A. Mandó, M.E. Fedi, N. Grassi, A. Migliori, Nucl. Instrum. Methods Phys. Res. B 239, 71 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    Ž. Šmit, M. Uršič, P. Pelicon, T. Trček-Pečak, B. Seme, A. Šmrekar, I. Langus, I. Nemec, K. Kavkler, Nucl. Instrum. Methods Phys. Res. B 266, 2047 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    N. Grassi, Nucl. Instrum. Methods Phys. Res. B 267, 825 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    G. Demortier, J.L. Ruvalcaba-Sil, Nucl. Instrum. Methods Phys. Res. B 118, 352 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    Ž. Šmit, M. Holc, Nucl. Instrum. Methods Phys. Res. B 219–220, 524 (2004) Google Scholar
  27. 27.
    Ž. Šmit, J. Istenič, T. Knific, Nucl. Instrum. Methods Phys. Res. B 266, 2329 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    G. Lagarde, P. Midy, I. Brissaud, Nucl. Instrum. Methods Phys. Res. B 132, 521 (1997) ADSCrossRefGoogle Scholar
  29. 29.
    I. Brissaud, G. Lagarde, P. Midy, Nucl. Instrum. Methods Phys. Res. B 117, 179 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    I. Brissaud, A. Guilló, G. Lagarde, P. Midy, T. Calligaro, J. Salomon, Nucl. Instrum. Methods Phys. Res. B 155, 447 (1999) ADSCrossRefGoogle Scholar
  31. 31.
    C. Miliani, F. Rosi, B.G. Brunetti, A. Sgamellotti, Acc. Chem. Res. 43(6), 728 (2010) CrossRefGoogle Scholar
  32. 32.
    L. Bonizzoni, A. Galli, G. Poldi, M. Milazzo, X-Ray Spectrom. 36(2), 55 (2007) CrossRefGoogle Scholar
  33. 33.
    L. Bonizzoni, S. Caglio, A. Galli, Appl. Phys. A 92, 203 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    L. Pappalardo, G. Pappalardo, F. Amorini, M.G. Branciforti, F.P. Romano, J. de Sanoit, F. Rizzo, E. Scafiri, A. Taormina, G. Gatto Rotondo, X-Ray Spectrom. 37(4), 370 (2008) CrossRefGoogle Scholar
  35. 35.
    J.A. Pérez-Serradilla, A. Jurado-López, M.D. Luque de Castro, Talanta 71, 97 (2007) CrossRefGoogle Scholar
  36. 36.
    V. Kantarelou, Ch. Zarkadas, A. Giakoumaki, M. Giannoulaki, A.G. Karydas, D. Anglos, V. Argyropoulos, Innovative investigation of metal artifacts, in Proceedings of METAL-07, vol. 2 (2007), pp. 35–41 Google Scholar
  37. 37.
    F. Rizzo, G.P. Cirrone, G. Cuttone, A. Esposito, S. Garraffo, G. Pappalardo, L. Pappalardo, F.P. Romano, S. Russo, Microchem. J. 97(2), 286 (2011) CrossRefGoogle Scholar
  38. 38.
    L. Beck, L. de Viguerie, Ph. Walter, L. Pichon, P.C. Gutierrez, J. Salomon, M. Menu, S. Sorieul, Nucl. Instrum. Methods Phys. Res. B 268, 2086 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    B. Kanngießer, I. Mantouvalou, W. Malzer, T. Wolff, O. Hahn, J. Anal. At. Spectrom. 23(6), 814 (2008) CrossRefGoogle Scholar
  40. 40.
    B. De Samber, G. Silversmit, K. De Schamphelaere, R. Evens, T. Schoonjans, B. Vekemans, C. Janssen, B. Masschaele, L. Van Hoorebeke, I. Szaloki, F. Vanhaecke, K. Rickers, G. Falkenberg, L. Vincze, J. Anal. At. Spectrom. 25, 544 (2010) CrossRefGoogle Scholar
  41. 41.
    W. Faubel, R. Simon, S. Heissler, F. Friedrich, P.G. Weidler, H. Becker, W. Schmidt, J. Anal. At. Spectrom. (2011). doi: 10.1039/c0ja00178c. Google Scholar
  42. 42.
    G. Silversmit, B. Vekemans, S. Nikitenko, S. Schmitz, T. Schoonjans, F.E. Brenker, L. Vincze, Phys. Chem. Chem. Phys. 12, 5653 (2010) CrossRefGoogle Scholar
  43. 43.
    L. Vincze, B. Vekemans, F.E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, F. Adams, Anal. Chem. 76, 6786 (2004) CrossRefGoogle Scholar
  44. 44.
    A. Woll, J. Mass, C. Bisulca, R. Huang, D.H. Bilderback, S. Gruner, N. Gao, Appl. Phys. A 83, 235 (2006) ADSCrossRefGoogle Scholar
  45. 45.
    X. Wei, Y. Lei, T. Sun, X. Lin, Q. Xu, D. Chen, Y. Zou, Z. Jiang, Y. Huang, X. Yu, X. Ding, H. Xu, X-Ray Spectrom. 37, 595 (2008) CrossRefGoogle Scholar
  46. 46.
    R.D. Perez, H.J. Sanchez, M. Rubio, C.A. Perez, X-Ray Spectrom. 40(1), 19 (2011) CrossRefGoogle Scholar
  47. 47.
    I. Mantouvalou, K. Lange, T. Wolff, D. Grötzsch, L. Lühl, M. Haschke, O. Hahn, B. Kanngießer, J. Anal. At. Spectrom. 25, 554 (2010) CrossRefGoogle Scholar
  48. 48.
    X. Lin, Z. Wang, T. Sun, Q. Pan, X. Ding, Nucl. Instrum. Methods Phys. Res. B 266, 2638 (2008) ADSCrossRefGoogle Scholar
  49. 49.
    K. Nakano, K. Tsuji, J. Anal. At. Spectrom. 25, 562 (2010) CrossRefGoogle Scholar
  50. 50.
    D. Wegrzynek, R. Mroczka, A. Markowicz, E. Chinea-Cano, S. Bamford, X-Ray Spectrom. 37, 635 (2008) CrossRefGoogle Scholar
  51. 51.
    M.A. Denecke, B. Brendebach, W. De Nolf, G. Falkenberg, K. Janssens, R. Simon, Spectrochim. Acta B 64, 791 (2009) ADSCrossRefGoogle Scholar
  52. 52.
    D. Sokaras, A.G. Karydas, W. Malzer, R. Schütz, B. Kanngießer, N. Grlj, P. Pelicon, M. Zitnik, J. Anal. At. Spectrom. 24, 611 (2009) CrossRefGoogle Scholar
  53. 53.
    M. Zitnik, P. Pelicon, N. Grlj, A.G. Karydas, D. Sokaras, R. Schutz, B. Kanngießer, Appl. Phys. Lett. 93, 094104 (2008) ADSCrossRefGoogle Scholar
  54. 54.
    M. Zitnik, P. Pelicon, K. Bucar, N. Grlj, A.G. Karydas, D. Sokaras, R. Schutz, B. Kanngiesser, X-Ray Spectrom. 38(6), 526 (2009) CrossRefGoogle Scholar
  55. 55.
    M. Zitnik, N. Grlj, P. Vaupetic, P. Pelicon, K. Bucar, D. Sokaras, A.G. Karydas, B. Kanngiesser, J. Anal. At. Spectrom. 25, 28 (2010) CrossRefGoogle Scholar
  56. 56.
    N. Grlj, P. Pelicon, M. Žitnik, P. Vavpetič, D. Sokaras, A.G. Karydas, B. Kanngießer, Nucl. Instrum. Methods Phys. Res. B (2011). doi: 10.1016/j.nimb.2011.02.072 Google Scholar
  57. 57.
    W. Malzer, B. Kanngießer, Spectrochim. Acta B 60, 1334 (2005) ADSCrossRefGoogle Scholar
  58. 58.
    Z. Smit, K. Janssens, K. Proost, I. Langus, Nucl. Instrum. Methods Phys. Res. B 219–220, 35 (2004) CrossRefGoogle Scholar
  59. 59.
    T. Wolff, I. Mantouvalou, W. Malzer, J. Nissen, D. Berger, I. Zizak, D. Sokaras, A.G. Karydas, N. Grlj, P. Pelicon, R. Schütz, M. Žitnik, B. Kanngießer, J. Anal. At. Spectrom. 24, 669 (2009) CrossRefGoogle Scholar
  60. 60.
    I. Mantouvalou, W. Malzer, I. Schaumann, L. Lühl, R. Dargel, C. Vogt, B. Kanngießer, Anal. Chem. 80, 819 (2008) CrossRefGoogle Scholar
  61. 61.
    I. Schaumann, W. Malzer, I. Mantouvalou, L. Lühl, B. Kanngießer, R. Dargel, U. Giese, C. Vogt, Spectrochim. Acta B 64, 334 (2009) ADSCrossRefGoogle Scholar
  62. 62.
    B. Vekemans, L. Vincze, F.E. Brenker, F. Adams, J. Anal. At. Spectrom. 19, 1302 (2004) CrossRefGoogle Scholar
  63. 63.
    D. Sokaras, A.G. Karydas, Anal. Chem. 81, 4946 (2009) CrossRefGoogle Scholar
  64. 64.
    A. Adriaens, Spectrochim. Acta B 60, 1503 (2005) ADSCrossRefGoogle Scholar
  65. 65.
    A. Woll, J. Mass, Ch. Bisulca, M. Cushman, C. Griggs, T. Wazny, N. Ocon, Stud. Conserv. 53, 93 (2008) Google Scholar
  66. 66.
    Ch. Bisulca, A. Woll, J. Mass, N. Ocon, C. Griggs, T. Wazny, M. Cushman, in Proceedings of 9th Int. Conf. NDT of Art, Jerusalem, Israel, 25–30 May, 2008 Google Scholar
  67. 67.
    B. Kanngießer, I. Mantouvalou, W. Malzer, T. Wolff, O. Hahn, J. Anal. At. Spectrom. 23, 814 (2008) CrossRefGoogle Scholar
  68. 68.
    K. Nakano, K. Tsuji, X-Ray Spectrom. 38, 446 (2009) CrossRefGoogle Scholar
  69. 69.
    A. Guilherme, J. Coroado, J.M.F. dos Santos, L. Lühl, T. Wolff, B. Kanngießer, M.L. Carvalho, Spectrochim. Acta B 66(5), 297 (2011) ADSCrossRefGoogle Scholar
  70. 70.
    I. Reiche, S. Röhrs, J. Salomon, B. Kanngießer, Y. Höhn, W. Malzer, F. Voigt, Anal. Bioanal. Chem. 393, 1025 (2009) CrossRefGoogle Scholar
  71. 71.
    E. Aloupi-Siotis, Recovery and revival of attic vase-decoration techniques, what can they offer archaeological research, in Papers on Special Techniques in Athenian Vases (J. Paul Getty Museum, Los Angeles, 2008), pp. 113–128 Google Scholar
  72. 72.
    I. Mantouvalou, T. Wolff, O. Hahn, I. Rabin, L. Lühl, M. Pagels, W. Malzer, B. Kanngießer, Anal. Chem. 83(16), 6308 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • B. Kanngießer
    • 1
  • W. Malzer
    • 1
  • I. Mantouvalou
    • 1
  • D. Sokaras
    • 2
    • 3
  • A. G. Karydas
    • 2
    • 4
  1. 1.Institut für Optik und Atomare PhysikTechnical University of BerlinBerlinGermany
  2. 2.Institute of Nuclear PhysicsNCSR ‘Demokritos’AthensGreece
  3. 3.Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkUSA
  4. 4.Nuclear Spectrometry and Applications Laboratory (NSAL)International Atomic Energy AgencySeibersdorfAustria

Personalised recommendations