Applied Physics A

, Volume 106, Issue 3, pp 679–685

Correlation between implantation defects and dopants in Fe-implanted SiC

  • A. Declémy
  • A. Debelle
  • C. Dupeyrat
  • L. Thomé
  • I. Monnet
  • D. Eyidi
Article

Abstract

SiC single crystals were implanted with Fe ions and the effects of implantation temperature, Fe concentration, and subsequent swift heavy ion irradiation on both dopant and damage depth distributions were evaluated by using RBS and channelling techniques. It is found that an increase of the implantation temperature above the threshold temperature for amorphization can lead to the formation of a broad layer (∼50 nm) containing a large concentration of implanted Fe atoms (∼2 at.%) but almost free of implantation defects. This particular configuration is likely due to dynamic annealing during implantation combined with defect annihilation at the surface. It is only observed when the implanted species concentration does not exceed a critical value (which lies between 2 and 5 at.% in the present system). Post-implantation swift heavy ion irradiation leads to a further decrease of the damage level, while the Fe distribution is not affected. The Fe substitutional fraction has been evaluated in the different tested conditions. A maximum value of ∼50% is found when implantation is performed at the temperature above that required to prevent amorphization (470 K in the present system). Swift-heavy ion irradiation seems to induce Fe atoms relocation at substitutional positions.

References

  1. 1.
    M. Schulz, Appl. Phys. 4, 91 (1974) ADSCrossRefGoogle Scholar
  2. 2.
    H. Sonntag, S. Kalbitzer, Appl. Phys. A 61, 363 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    S.J. Pearton, Y.D. Park, C.R. Abernathy, M.E. Overberg, G.T. Thaler, J. Kim, F. Ren, J.M. Zavada, R.G. Wilson, Thin Solid Films 447–448, 493 (2004) CrossRefGoogle Scholar
  5. 5.
    F. Stromberg, W. Keune, X. Chen, S. Bedanta, H. Reuther, A. Mücklich, J. Phys., Condens. Matter 18, 9881 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    B. Song, H. Bao, H. Li, M. Lei, J. Jian, J. Han, X. Zhang, S. Meng, W. Wang, X. Chen, Appl. Phys. Lett. 94, 102508 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    A. Los, V. Los, A. Timoshevskii, J. Electron. Mater. 39, 545 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Shi, Y.X. Zhang, C.Z. Jiang, D.J. Fu, X.J. Fan, Phys. Rev. B, Condens. Matter 388, 82 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    A. Declémy, C. Dupeyrat, L. Thomé, A. Debelle, Mater. Sci. Forum 615–617, 461 (2009) CrossRefGoogle Scholar
  10. 10.
    C. Dupeyrat, A. Declémy, M. Drouet, D. Eyidi, L. Thomé, A. Debelle, M. Viret, F. Ottd, Phys. Rev. B, Condens. Matter 404, 4731 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    M.K. Linnarsson, A. Hallén, Nucl. Instrum. Methods B. doi:10.1016/j.nimb.2011.07.056
  12. 12.
    C.J. McHargue, J.M. Williams, Nucl. Instrum. Methods 80/81, 889 (1993) CrossRefGoogle Scholar
  13. 13.
    S.J. Zinkle, L.L. Snead, Nucl. Instrum. Methods 116, 92 (1996) CrossRefGoogle Scholar
  14. 14.
    M.G. Grimaldi, L. Calcagno, P. Musumeci, N. Frangis, J. Van Landuyt, J. Appl. Phys. 81, 7181 (1997) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Zhang, W.J. Weber, W. Jiang, A. Hallen, G. Possnert, J. Appl. Phys. 91, 6388 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    A. Gentils, M.-F. Barthe, L. Thomé, M. Behar, Appl. Surf. Sci. 255, 78 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    W.J. Weber, L. Wang, Y. Zhang, W. Jiang, I.-T. Bae, Nucl. Instrum. Methods 266, 2793 (2008) CrossRefGoogle Scholar
  18. 18.
    E. Wendler, Th. Bierschenk, W. Wesch, E. Friedland, J.B. Malherbe, Nucl. Instrum. Methods 268, 2996 (2010) CrossRefGoogle Scholar
  19. 19.
    W. Jiang, W.J. Weber, Y. Zhang, S. Thevuthasan, V. Sutthanandan, Nucl. Instrum. Methods 207, 92 (2003) CrossRefGoogle Scholar
  20. 20.
    A. Benyagoub, A. Audren, L. Thomé, F. Garrido, Appl. Phys. Lett. 89, 241914 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    L. Nowicki, A. Turos, R. Ratajczak, A. Stonert, F. Garrido, Nucl. Instrum. Methods 240, 277 (2005) CrossRefGoogle Scholar
  22. 22.
    M. Mayer, SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut fur Plasmaphysik, Garching, Germany (1997), http://www.rzg.mpg.de/~mam/
  23. 23.
    W. Wesch, A. Heft, E. Wendfer, T. Bachmann, E. Glaser, Nucl. Instrum. Methods 96, 335 (1995) CrossRefGoogle Scholar
  24. 24.
    A. Heft, E. Wendler, J. Heindl, T. Bachmann, E. Glaser, H.P. Strunk, W. Wesch, Nucl. Instrum. Methods 113, 239 (1996) CrossRefGoogle Scholar
  25. 25.
    C. Dupeyrat, A. Declémy, M. Drouet, A. Debelle, L. Thomé, Nucl. Instrum. Methods 268, 2863 (2010) CrossRefGoogle Scholar
  26. 26.
    A. Audren, A. Benyagoub, L. Thome, F. Garrido, Nucl. Instrum. Methods 266, 2810 (2008) CrossRefGoogle Scholar
  27. 27.
    F. Seitz, J.S. Koehler, Solid State Phys. 2, 305 (1956) Google Scholar
  28. 28.
    V.L. Shaposhnikov, N.A. Sobolev, J. Phys., Condens. Matter 16, 1761 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    L.C. Feldman, J.W. Mayer, S.T. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982), p. 59 Google Scholar
  30. 30.
    W. Wesch, A. Heft, J. Heindl, H.P. Strunk, T. Bachmann, E. Glaser, E. Wendler, Nucl. Instrum. Methods 106, 339 (1995) CrossRefGoogle Scholar
  31. 31.
    A. Turos, A. Azzam, M.K. Kloska, O. Meyer, Nucl. Instrum. Methods 19–20, 123 (1987) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Declémy
    • 1
  • A. Debelle
    • 2
  • C. Dupeyrat
    • 1
  • L. Thomé
    • 2
  • I. Monnet
    • 3
  • D. Eyidi
    • 1
  1. 1.Département de Physique et Mécanique des Matériaux, SP2MI, Téléport 2Institut Pprime, UPR 3346, CNRS, Université de Poitiers, ENSMAFUTUROSCOPE-Chasseneuil CedexFrance
  2. 2.Centre de spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM)Univ. Paris-Sud, CNRS-IN2P3Orsay-CedexFrance
  3. 3.Centre de Recherche sur les Matériaux, les Ions et la Photonique (CIMAP)CEA-CNRS-ENSICAENCaen Cedex 5France

Personalised recommendations