Applied Physics A

, Volume 105, Issue 4, pp 801–818 | Cite as

Paper un-printing: using lasers to remove toner-print in order to reuse office paper

  • D. R. Leal-Ayala
  • J. M. AllwoodEmail author
  • T. A. M. Counsell
Invited paper


In this article, lasers in the ultraviolet, visible and infrared light spectra working with pulse widths in the nanosecond range are applied to a range of toner-paper combinations to determine their ability to remove toner. If the laser energy fluence can be chosen to stay below the ablation threshold of paper at the same time that it surpasses that of toner, paper could be cleaned and re-used instead of being recycled or disposed into a landfill. This could significantly reduce the environmental impact of paper production and use. Although there are a variety of paper conservation studies which have investigated the effects of laser radiation on blank and soiled paper, none has previously explored toner-print removal from paper by laser ablation. Colour analysis under the L a b colour space and SEM examination of the outcome indicate that it is possible to remove toner from paper without damaging and discolouring the substrate. Best results are obtained when employing visible radiation at a wavelength of 532 nm working with a pulse width of 4 ns and energy fluences under 1.6 J/cm2. This means that it is technically feasible to remove toner-print for paper re-use.


Laser Ablation Ablation Depth Paper Substrate Laser Cleaning Energy Fluence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    IIED, Towards a Sustainable Paper Cycle (International Institute for Environment and Development, Geneva, 1996), p. 25 Google Scholar
  2. 2.
    B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds.), Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007) Google Scholar
  3. 3.
    T.A.M. Counsell, J.M. Allwood, Resour. Conserv. Recycl. 49(4), 340 (2007) CrossRefGoogle Scholar
  4. 4.
    T.A.M. Counsell, J.M. Allwood, J. Mater. Process. Technol. 173(1), 111 (2006) CrossRefGoogle Scholar
  5. 5.
    H. Ihori, M. Fukiage, T. Yoshida, M. Fuji, H. Ninomiya, IEEJ Trans. Electron. Information Syst. 125(6), 983 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    J. Kolar, M. Strlic, D. Müller-Hess, A. Gruber, K. Troschke, S. Pentzien, W. Kautek, J. Cult. Heritage 1, S221–S224 (2000) CrossRefGoogle Scholar
  7. 7.
    J. Kolar, M. Strlic, S. Pentzien, W. Kautek, Appl. Phys. A 71, 87–90 (2000) ADSGoogle Scholar
  8. 8.
    A. Kaminska, M. Sawczak, M. Cieplinski, G. Sliwinski, B. Kosmowski, Opt. Appl. 34(1), 121–132 (2004) Google Scholar
  9. 9.
    A. Kaminska, M. Sawczak, K. Komar, G.S. Sliwinski, Appl. Surf. Sci. 253, 7860–7864 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    J. Kolar, M. Strlic, M. Marincek, Appl. Phys. A 75, 673–676 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    M. Strlic, V.S. Selih, J. Kolar, D. Kocar, B. Pihlari, R. Ostrowski, J. Marczak, M. Strzelec, M. Marincek, T. Vuorinen, L.S. Johansson, Appl. Phys. A 81, 943–951 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    J. Kolar, M. Strlic, D. Müller-Hess, A. Gruber, K. Troschke, S. Pentzien, W. Kautek, J. Cult. Heritage 4, 185–187 (2003) CrossRefGoogle Scholar
  13. 13.
    W. Kautek, S. Pentzien, P. Rudolph, J. Krüger, E. König, Appl. Surf. Sci. 127–129, 746–754 (1998) CrossRefGoogle Scholar
  14. 14.
    J. Jalbert, R. Lacasse, M.A. El Khakani, R. Gilbert, Appl. Phys. A 81, 57–63 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    K. Ochocinska, A. Kaminska, G.S. Sliwinski, J. Cult. Heritage 4, 188–193 (2003) CrossRefGoogle Scholar
  16. 16.
    J. Krüger, S. Pentzien, A. Conradi, Appl. Phys. A 92, 179–183 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    HP, Q1338A Materials Safety Data Sheet: HP Color LaserJet Black Print Cartridge (Hewlett-Packard, Ltd., Bracknell, 2004) Google Scholar
  18. 18.
    V.D. Daniels, Chem. Soc. Rev. 25, 179–186 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    H.A. Carter, J. Chem. Educ. 73(11), 1068–1073 (1996) CrossRefGoogle Scholar
  20. 20.
    D.N.S. Hon (ed. J.L Williams), American Chemical Society, 119–141 (1981) Google Scholar
  21. 21.
    E.M. Williams, The Physics and Technology of Xerographic Processes (Wiley, Chichester, 1984) Google Scholar
  22. 22.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109–115 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    J.F. Ready, J. Appl. Phys. 36(2) (1965) Google Scholar
  24. 24.
    T.A.M. Counsell, Remove Toner: Reuse Paper. PhD Thesis. University of Cambridge, UK (2007) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. R. Leal-Ayala
    • 1
  • J. M. Allwood
    • 1
    Email author
  • T. A. M. Counsell
    • 1
  1. 1.Low Carbon Materials Processing Group, Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations