Advertisement

Applied Physics A

, Volume 106, Issue 3, pp 545–550 | Cite as

Advances in the electrochemical regeneration of aluminum hydride

  • Michael J. Martínez-Rodríguez
  • Brenda L. García-Díaz
  • Joseph A. TeprovichJr.
  • Douglas A. Knight
  • Ragaiy ZidanEmail author
Article

Abstract

In previous work, a reversible cycle that uses electrolysis and catalytic hydrogenation of spent Al(s) for the regeneration of alane (AlH3) was reported. In this study, the electrochemical synthesis of alane is improved. Advances in the electrochemical regeneration of alane have been achieved via the use of lithium aluminum hydride (LiAlH4) and lithium chloride (LiCl). Lithium chloride reacts in a cyclic process and functions as an electro-catalytic additive that enhances the electrochemical process by increasing the cell efficiency and the alane production. Electrochemical techniques are used to show that the increased rate of alane generation is due to the electro-catalytic effect of lithium chloride, rather than an electrolyte enhanced effect.

Keywords

LiCl Aprotic Solvent TEDA Lithium Chloride Electrochemical Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration (2011), http://www.nrel.gov/hydrogen/proj_learning_demo.html
  3. 3.
    Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles (2011), http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf (2009)
  4. 4.
    S. Adhikari, J.J. Lee, K.R. Hebert, J. Electrochem. Soc. 155, C16–C21 (2008) CrossRefGoogle Scholar
  5. 5.
    N.M. Alpatova, T.N. Dymova, Y.M. Kessler, O.R. Osipov, Russ. Chem. Rev. 37, 99–114 (1968) ADSCrossRefGoogle Scholar
  6. 6.
    H. Clasen, Ger. Pat. 623, 1141 (1962) Google Scholar
  7. 7.
    R. Zidan, B.L. García-Díaz, C.S. Fewox, A.C. Stowe, J.R. Gray, A.G. Harter, Chem. Commun. 25, 3717 (2009) CrossRefGoogle Scholar
  8. 8.
    R. Zidan, Patent pending (2011) Google Scholar
  9. 9.
    E.C. Ashby, F.R. Dobbs, H.P. Hopkins Jr., J. Am. Chem. Soc. 95, 2823–2829 (1973) CrossRefGoogle Scholar
  10. 10.
    H. Senoh, T. Kiyobayashi, N. Kuriyama, K. Tatsumi, K. Yasuda, J. Power Sources 164, 94–99 (2007) CrossRefGoogle Scholar
  11. 11.
    H. Senoh, T. Kiyobayashi, N. Kuriyama, Int. J. Hydrog. Energy 33, 3178–3181 (2008) CrossRefGoogle Scholar
  12. 12.
    J. Graetz, S. Chaudhuri, J. Wegrzyn, Y. Celebi, J.R. Johnson, W. Zhou, J.J. Reilly, J. Phys. Chem. 111, 19148–19152 (2007) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Michael J. Martínez-Rodríguez
    • 1
  • Brenda L. García-Díaz
    • 1
  • Joseph A. TeprovichJr.
    • 1
  • Douglas A. Knight
    • 1
  • Ragaiy Zidan
    • 1
    Email author
  1. 1.Savannah River National LaboratoryAikenUSA

Personalised recommendations