Advertisement

Applied Physics A

, Volume 105, Issue 4, pp 847–854 | Cite as

Multiple activation of ion track etched polycarbonate for the electroless synthesis of metal nanotubes

  • F. MuenchEmail author
  • M. Oezaslan
  • T. Seidl
  • S. Lauterbach
  • P. Strasser
  • H.-J. Kleebe
  • W. Ensinger
Article

Abstract

In our study, we examined the formation of thin films of silver nanoparticles on polycarbonate and the influence of the silver loading on the electroless synthesis of metal nanotubes. Control of the silver film thickness occurred by consecutive dipping of the polymer template in tin(II) and silver(I) solutions. The deposition progress was studied using UV-Vis spectroscopy. The reaction mechanism relies on the adsorption of reactive ions on the polymer template as well as on the silver nanoparticles. The initial catalytic activity of silver-covered ion track etched polycarbonate is an important governing factor for the electroless synthesis of metal nanotubes with desired thickness and shape. Therefore, the presented method allows specific template preparation according to given synthetic demands. High aspect ratio copper, gold, and platinum nanotubes were produced by the combination of sufficiently activated templates with optimized electroless plating procedures.

Keywords

Silver Nanoparticles Electroless Plating Polymer Template Template Surface Copper Sulfate Pentahydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.R. Martin, Science 266, 1994 (1961) Google Scholar
  2. 2.
    C.J. Brumlik, V.P. Menon, C.R. Martin, J. Mater. Res. 9, 1174 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    V.P. Menon, C.R. Martin, Anal. Chem. 67, 1995 (1920) Google Scholar
  4. 4.
    E. Ferain, R. Legras, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 174, 116 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    T.W. Cornelius, P.Y. Apel, B. Schiedt, C. Trautmann, M.E. Toimil-Molares, S. Karim, R. Neumann, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 265, 553 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    C.R. Martin, Z.S. Siwy, Science 317, 331 (2007) CrossRefGoogle Scholar
  7. 7.
    A. Dangwal, C.S. Pandey, G. Müller, S. Karim, T.W. Cornelius, C. Trautmann, Appl. Phys. Lett. 92, 063115 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    K.B. Jirage, J.C. Hulteen, C.R. Martin, Anal. Chem. 71, 4913 (1999) CrossRefGoogle Scholar
  9. 9.
    F. Muench, U. Kunz, C. Neetzel, S. Lauterbach, H.J. Kleebe, W. Ensinger, Langmuir 27, 430 (2011) CrossRefGoogle Scholar
  10. 10.
    F. Muench, S. Kaserer, U. Kunz, I. Svoboda, J. Brötz, S. Lauterbach, H.J. Kleebe, C. Roth, W. Ensinger, J. Mater. Chem. 21, 6286 (2011) CrossRefGoogle Scholar
  11. 11.
    C.R.K. Rao, D.C. Trivedi, Coord. Chem. Rev. 249, 613 (2005) CrossRefGoogle Scholar
  12. 12.
    H.O. Ali, I.R.A. Christie, Gold Bull. 17, 118 (1984) CrossRefGoogle Scholar
  13. 13.
    B. Bercu, I. Enculesco, R. Spohr, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 225, 497 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    W. Wang, N. Li, X. Li, W. Geng, S. Qiu, Mater. Res. Bull. 41, 1417 (2006) CrossRefGoogle Scholar
  15. 15.
    N. Li, X. Li, X. Yin, W. Wang, S. Qiu, Solid State Commun. 132, 841 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    S. Demoustier-Champagne, M. Delvaux, Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 15, 269 (2001) CrossRefGoogle Scholar
  17. 17.
    S. Yu, U. Welp, L.Z. Hua, A. Rydh, W.K. Kwok, H.H. Wang, Chem. Mater. 17, 3445 (2005) CrossRefGoogle Scholar
  18. 18.
    C. Bréchignac, P. Houdy, M. Lahmani, Nanomaterials and Nanochemistry (Springer, Berlin, 2007), pp. 197–227 CrossRefGoogle Scholar
  19. 19.
    P. Mulvaney, Langmuir 12, 788 (1996) CrossRefGoogle Scholar
  20. 20.
    O.M. Magnussen, Chem. Rev. 102, 679 (2002) CrossRefGoogle Scholar
  21. 21.
    I.M. Kolthoff, E.B. Sandell, E.J. Meehan, S. Bruckenstein, Quantitive Chemical Analysis, 4th edn. (Collier-Macmillan, London, 1971), p. 721 Google Scholar
  22. 22.
    P. Mulvaney, T. Linnert, A. Henglein, J. Phys. Chem. 95, 7843 (1991) CrossRefGoogle Scholar
  23. 23.
    S. Lindroos, T. Ruuskanen, M. Ritala, M. Leskelä, Thin Solid Films 460, 36 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    M. De Leo, F.C. Pereira, L.M. Moretto, P. Scopece, S. Polizzi, P. Ugo, Chem. Mater. 19, 5955 (2007) CrossRefGoogle Scholar
  25. 25.
    K.D. Beard, D. Borrelli, A.M. Cramer, D. Blom, J.W. Van Zee, J.R. Monnier, ACS Nano 3, 2841 (2009) CrossRefGoogle Scholar
  26. 26.
    S.Y. Chang, C.W. Lin, H.H. Hsu, J.H. Fang, S.J. Lin, J. Electrochem. Soc. 151, C81 (2004) CrossRefGoogle Scholar
  27. 27.
    T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, Electrochim. Acta 54, 6053 (2009) CrossRefGoogle Scholar
  28. 28.
    Y. Lai, W. Pan, D. Zhang, J. Zhan, Nanoscale 3, 2134 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    A. Sarkar, A. Manthiram, J. Phys. Chem. C 114, 4725 (2010) CrossRefGoogle Scholar
  30. 30.
    M. Kevin, W.L. Ong, G.H. Lee, G.W. Ho, Nanotechnology 22, 235701 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    R. Pauliukaitė, G. Stalnionis, Z. Jusys, A. Vaškelis, J. Appl. Electrochem. 36, 1261 (2006) CrossRefGoogle Scholar
  32. 32.
    D.R. Lide, Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, 2003–2004), pp. 23–33 Google Scholar
  33. 33.
    Z. Chen, M. Waje, W. Li, Y. Yan, Angew. Chem., Int. Ed. Engl. 46, 4060 (2007) CrossRefGoogle Scholar
  34. 34.
    E. Antolini, J. Perez, J. Mater. Sci. 46, 4435 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    M. Oezaslan, P. Strasser, J. Power Sources 196, 5240 (2011) CrossRefGoogle Scholar
  36. 36.
    M. Oezaslan, F. Hasché, P. Strasser, Chem. Mater. 23, 2159 (2011) CrossRefGoogle Scholar
  37. 37.
    P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Nat. Chem. 2, 454 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • F. Muench
    • 1
    Email author
  • M. Oezaslan
    • 2
  • T. Seidl
    • 1
    • 3
  • S. Lauterbach
    • 1
  • P. Strasser
    • 2
  • H.-J. Kleebe
    • 1
  • W. Ensinger
    • 1
  1. 1.Department of Materials and GeoscienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of ChemistryTechnische Universität BerlinBerlinGermany
  3. 3.Material Research GroupGSI Helmholtz Centre for Heavy Ion Research GmbHDarmstadtGermany

Personalised recommendations