Applied Physics A

, Volume 105, Issue 2, pp 329–339 | Cite as

Nanophotonic light-trapping theory for solar cells

Invited paper

Abstract

Conventional light-trapping theory, based on a ray-optics approach, was developed for standard thick photovoltaic cells. The classical theory established an upper limit for possible absorption enhancement in this context and provided a design strategy for reaching this limit. This theory has become the foundation for light management in bulk silicon PV cells, and has had enormous influence on the optical design of solar cells in general. This theory, however, is not applicable in the nanophotonic regime. Here we develop a statistical temporal coupled-mode theory of light trapping based on a rigorous electromagnetic approach. Our theory reveals that the standard limit can be substantially surpassed when optical modes in the active layer are confined to deep-subwavelength scale, opening new avenues for highly efficient next-generation solar cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Taretto, U. Rau, Modeling extremely thin absorber solar cells for optimized design. Prog. Photovolt. 12, 573–591 (2004) CrossRefGoogle Scholar
  2. 2.
    E. Yablonovitch, Statistical ray optics. J. Opt. Soc. Am. A 72, 899–907 (1982) ADSCrossRefGoogle Scholar
  3. 3.
    A. Goetzberger, Optical confinement in thin Si-solar cells by diffuse back reflectors, in Fifteenth IEEE Photovoltaic Specialists Conference - 1981 (IEEE Press, New York, 1981), pp. 867–870 Google Scholar
  4. 4.
    P. Campbell, M.A. Green, The limiting efficiency of silicon solar-cells under concentrated sunlight. IEEE Trans. Electron Devices 33, 234–239 (1986) ADSCrossRefGoogle Scholar
  5. 5.
    P. Sheng, A.N. Bloch, R.S. Stepleman, Wavelength-selective absorption enhancement in thin-film solar cells. Appl. Phys. Lett. 43, 579–581 (1983) ADSCrossRefGoogle Scholar
  6. 6.
    P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, J.D. Joannopoulos, Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express 15, 16986–17000 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    A. Chutinan, S. John, Light trapping and absorption optimization in certain thin-film photonic crystal architectures. Phys. Rev. A 78(2), 023825 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    H.R. Stuart, D.G. Hall, Thermodynamic limit to light trapping in thin planar structures. J. Opt. Soc. Am. A 14, 3001–3008 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    I. Tobias, A. Luque, A. Marti, Light intensity enhancement by diffracting structures in solar cells. J. Appl. Phys. 104, 034502 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    P.N. Saeta, V.E. Ferry, D. Pacifici, J.N. Munday, H.A. Atwater, How much can guided modes enhance absorption in thin solar cells? Opt. Express 17, 20975–20990 (2009) CrossRefGoogle Scholar
  12. 12.
    R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009) CrossRefGoogle Scholar
  13. 13.
    S.B. Mallick, M. Agrawal, P. Peumans, Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express 18, 5691–5706 (2010) CrossRefGoogle Scholar
  14. 14.
    C. Lin, M.L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt. Express 17, 19371–19381 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    S. Mokkapati, F.J. Beck, A. Polman, K.R. Catchpole, Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl. Phys. Lett. 95, 053115 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    J. Müller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells. Sol. Energy 77, 917–930 (2004) CrossRefGoogle Scholar
  17. 17.
    M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L.C. Kimerling, B.A. Alamariu, Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Appl. Phys. Lett. 89, 111111 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    C. Rockstuhl, F. Lederer, K. Bittkau, R. Carius, Light localization at randomly textured surfaces for solar-cell applications. Appl. Phys. Lett. 91 (2007) Google Scholar
  23. 23.
    J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping for solar cells. Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010) CrossRefGoogle Scholar
  25. 25.
    Z. Yu, A. Raman, S. Fan, Fundamental limit for light trapping in grating structures. Opt. Express (2010) Google Scholar
  26. 26.
    Z. Yu, S. Fan, Angular constraint on light-trapping absorption enhancement in solar cells. Appl. Phys. Lett. 98, 011106 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958) ADSCrossRefGoogle Scholar
  28. 28.
    S. Fan, J.D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    H.A. Haus, Waves and Fields in Optoelectronics. Prentice-Hall Series in Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, 1984), pp. xii, 402 p. Google Scholar
  30. 30.
    S. Fan, W. Suh, J.D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1995), p. 699 Google Scholar
  32. 32.
    C. Heine, R.H. Morf, Submicrometer gratings for solar energy applications. Appl. Opt. 34, 2476–2482 (1995) ADSCrossRefGoogle Scholar
  33. 33.
    J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview. J. Mater. Res. 19, 1924–1945 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    A. Mayera, S. Scullya, B. Hardina, M. Rowella, M. McGeheea, Polymer-based solar cells. Mater. Today 10, 28–33 (2007) CrossRefGoogle Scholar
  36. 36.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995) ADSCrossRefGoogle Scholar
  38. 38.
    V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Green, Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices. Progr. Photovol. (2010) Google Scholar
  40. 40.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998) Google Scholar
  41. 41.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005) ADSCrossRefGoogle Scholar
  42. 42.
    B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005) ADSCrossRefGoogle Scholar
  43. 43.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Ginzton LabStanford UniversityStanfordUSA

Personalised recommendations