Applied Physics A

, 105:65 | Cite as

Comment on “Exponential ionic drift: fast switching and low volatility of thin-film memristors” by D.B. Strukov and R.S. Williams in Appl. Phys. A (2009) 94: 515–519

  • P. MeuffelsEmail author
  • H. Schroeder


In a recent publication (see title), it was proposed that—instead of the average macroscopic electric field—one should use the local or LORENTZ field inside dielectrics to calculate high-field ionic drift mobilities. This incorrect proposition seems now to start circulating even though it has been clearly shown in the past that the standard equations for ionic conduction in solids are by no way subject to any corrections for local or LORENTZ field effects. It is thus worth to recall some basic assumptions with regard to ion migration in crystalline solids. We believe that the clarification of this issue is of great importance for the large and still growing community of researchers dealing with resistive switching and memristive effects.


Free Enthalpy Resistive Switching Solid State Phys Ionic Drift Electric Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.B. Strukov, R.S. Williams, Appl. Phys. A 94, 515–519 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    M. Noman, W. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Appl. Phys. A 102, 877–883 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    S. Yu, H.S.P. Wong, IEEE Trans. Electron Devices 58, 1352–1360 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    E.S. Machlin, An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science (Giro Press, Croton-on-Hudson, 1991) Google Scholar
  5. 5.
    M.J. Dignam, J. Phys. Chem. Solids 29, 249–260 (1968) ADSCrossRefGoogle Scholar
  6. 6.
    J.J. O’Dwyer, The Theory of Electrical Conduction and Breakdown in Solid Dielectrics (Clarendon, Oxford, 1973) Google Scholar
  7. 7.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976) Google Scholar
  8. 8.
    R.J. Maurer, J. Chem. Phys. 9, 579–584 (1941) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Haven, H.C. Brinkman, F. Schwarzl, J. Wood, A. Suddaby, A.R. Ubbelohde, F.C. Frank, J.S. Koehler, A. Seeger, J. Volger, J.S. Dryden, J.H. de Boer, H. Gränicher, F.G. Fumi, A.B. Lidiard, R.A. Sack, A. Steinemann, R.M. Barrer, M. Eigen, J.L. Meijering, J. Meinnel, Discuss. Faraday Soc. 23, 72–84 (1957) CrossRefGoogle Scholar
  10. 10.
    A.B. Lidiard, Handbuch der Physik 20 (Springer, Berlin, 1957), pp. 246–349 Google Scholar
  11. 11.
    I.G. Austin, M. Sayer, J. Phys. C, Solid State Phys. 7, 905–924 (1974) ADSCrossRefGoogle Scholar
  12. 12.
    M. Saglam, L. Friedman, J. Phys. C, Solid State Phys. 8, L245–L248 (1975) ADSCrossRefGoogle Scholar
  13. 13.
    M. Saglam, L.R. Friedman, J. Phys. C, Solid State Phys. 16, 555–565 (1983) ADSCrossRefGoogle Scholar
  14. 14.
    R.W. Munn, J. Phys. C, Solid State Phys. 8, 2721–2728 (1975) ADSCrossRefGoogle Scholar
  15. 15.
    N. Wiser, Phys. Rev. 129, 62–69 (1963) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Peter Grünberg InstitutForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations