Applied Physics A

, Volume 105, Issue 2, pp 445–451 | Cite as

Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study

  • A. K. M. M. Morshed
  • Taitan C. Paul
  • Jamil A. Khan


Molecular dynamics simulations have been employed to investigate the boiling phenomena of thin liquid films adsorbed on a nanostructured solid surface. The molecular system was comprised of the following: solid platinum wall, liquid argon, and argon vapor. A few layers of the liquid argon were placed on the nanoposts decorated solid surface. The nanoposts height was varied keeping the liquid film thickness constant to capture three scenarios: (i) liquid-film thickness is higher than the height of the nanoposts, (ii) liquid-film and nanoposts are of same height, and (iii) liquid-film thickness is less than the height of the nanoposts. The rest of the simulation box was filled with argon vapor. The simulation was started from its initial configuration, and once the equilibrium of the three phase system was established, the wall was suddenly heated to a higher temperature which resembles an ultrafast laser heating. Two different jump temperatures were selected: a few degrees above the boiling point to initiate normal evaporation and far above the critical point to initiate explosive boiling. Simulation results indicate nanostructures play a significant role in both cases: Argon responds very quickly for the nanostructured surface, the transition from liquid to vapor becomes more gradual, and the evaporation rate increases with the nanoposts height.


Liquid Layer Simulation Domain Argon Atom Liquid Argon Liquid Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.A.G. Kabov, E. Ya, D.V. Zaitsev, in Thermal and Thermomechanical Phenomena in Electronic Systems 2008, Orlando, FL, 28–31 May 2008 Google Scholar
  2. 2.
    S. Georgiou, A. Koubenakis, Chem. Rev. 103(2), 349–394 (2003) CrossRefGoogle Scholar
  3. 3.
    R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 11(7), 075020 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    T. Juhasz, X.H. Hu, L. Turi, Z. Bor, Lasers Surg. Med. 15(1), 91–98 (1994) CrossRefGoogle Scholar
  5. 5.
    P. Yi, D. Poulikakos, J. Walther, G. Yadigaroglu, Int. J. Heat Mass Transf. 45(10), 2087–2100 (2002) MATHCrossRefGoogle Scholar
  6. 6.
    G. Nagayama, T. Tsuruta, P. Cheng, Int. J. Heat Mass Transf. 49(23–24), 4437–4443 (2006) MATHCrossRefGoogle Scholar
  7. 7.
    B.R. Novak, E.J. Maginn, M.J. McCready, J. Heat Transf. 130(4), 042411 (2008) CrossRefGoogle Scholar
  8. 8.
    S. Maruyama, T. Kimura, in 5th ASME–JSME Thermal Engineering Joint Conference, San Diego, USA, 1999 Google Scholar
  9. 9.
    S.C. Maroo, J.N. Chung, J. Colloid Interface Sci. 328(1), 134–146 (2008) CrossRefGoogle Scholar
  10. 10.
    X. Gu, H.M. Urbassek, Appl. Phys. B, Lasers Opt. 81(5), 675–679 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    G. Nagayama, M. Kawagoe, A. Tokunaga, T. Tsuruta, Int. J. Therm. Sci. 49(1), 59–66 (2010) CrossRefGoogle Scholar
  12. 12.
    G. Nagayama, S. Shi-iki, T. Tsuruta, Trans. Jpn. Soc. Mech. Eng. B 73(728), 1084–1091 (2007) CrossRefGoogle Scholar
  13. 13.
    G. Nagayama, M. Kawagoe, T. Tsuruta, in MNC2007-21410, Kyoto, Japan, 2007, pp. 1–10 Google Scholar
  14. 14.
    J.E. Lennard-Jones, A.F. Devonshire, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 163(912), 53–70 (1937) ADSGoogle Scholar
  15. 15.
    Y. Dou, L.V. Zhigilei, N. Winograd, B.J. Garrison, J. Phys. Chem. 105(12), 2748–2755 (2001) CrossRefGoogle Scholar
  16. 16.
    D.A. Kofke, J. Chem. Phys. 98 (5) (1993) Google Scholar
  17. 17.
    S.J. Plimpton, J. Comput. Phys. 117, 1–19 (1995) ADSMATHCrossRefGoogle Scholar
  18. 18.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. Model. 14, 33–38 (1996) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. K. M. M. Morshed
    • 1
  • Taitan C. Paul
    • 1
  • Jamil A. Khan
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations