Applied Physics A

, Volume 106, Issue 1, pp 105–112 | Cite as

Self-correlation function for determination of geometrical parameters in Nanoporous Anodic Alumina Films

  • I. Mínguez-Bacho
  • S. Rodríguez-López
  • A. Asenjo
  • M. Vázquez
  • M. Hernández-Vélez
Article

Abstract

Self-correlation functions have been applied to top-view high-resolution scanning electron microscopy micrographs of anodic alumina nanoporous arrays in order to determine their ordering degree and geometrical parameters; as a result, self-correlation images were obtained. These images are formed in the real space and can be used to make quantitative and qualitative surface analysis. The developed method for surface analysis has been applied to three series of porous anodic alumina films grown using sulphuric acid based electrolytes with concentrations of 3, 10, and 20 wt% and applying voltages from 25 down to 5 V. Significant changes in ordering degree, interpore distances, and pore diameters have been observed. In addition, in this study, the existence of an anodization window for self-ordering regimes for each acid concentration used in the electrolytic solution is also revealed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

339_2011_6569_MOESM1_ESM.pdf (694 kb)
(PDF 694 kB)

References

  1. 1.
    H. Masuda, M. Nagae, T. Morikawa, K. Nishio, Jpn. J. Appl. Phys. 45, L406 (2006) CrossRefADSGoogle Scholar
  2. 2.
    G.D. Sulka, K.G. Parkola, Electrochim. Acta 52, 1880 (2007) CrossRefGoogle Scholar
  3. 3.
    F. Zhang, X.H. Liu, C.F. Pan, J. Zhu, Nanotechnology 18, 345302 (2007) CrossRefGoogle Scholar
  4. 4.
    Y. Matsui, K. Nishio, H. Masuda, Small 2, 522 (2006) CrossRefGoogle Scholar
  5. 5.
    W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gosele, Nat. Nanotechnol. 3, 234 (2008) CrossRefGoogle Scholar
  6. 6.
    D. Losic, D. Losic Jr., Langmuir 25, 5426 (2009) CrossRefGoogle Scholar
  7. 7.
    W. Lee, J.C. Kim, U. Gosele, Adv. Funct. Mater. 20, 21 (2010) CrossRefGoogle Scholar
  8. 8.
    W. Lee, J.C. Kim, Nanotechnology 21, 485304 (2010) CrossRefGoogle Scholar
  9. 9.
    J. Delaet, J. Vanhellemont, H. Terryn, J. Vereecken, Appl. Phys. A, Mater. Sci. Process. 54, 72 (1992) CrossRefADSGoogle Scholar
  10. 10.
    A.C. Galca, E.S. Kooij, H. Wormeester, C. Salm, V. Leca, J.H. Rector, B. Poelsema, J. Appl. Phys. 94, 4296 (2003) CrossRefADSGoogle Scholar
  11. 11.
    L. Bruschi, G. Fois, G. Mistura, K. Sklarek, R. Hillebrand, M. Steinhart, U. Gosele, Langmuir 24, 10936 (2008) CrossRefGoogle Scholar
  12. 12.
    F. Casanova, C.E. Chiang, C.P. Li, I.V. Roshchin, A.M. Ruminski, M.J. Sailor, I.K. Schuller, Nanotechnology 19, 315709 (2008) CrossRefADSGoogle Scholar
  13. 13.
    A. Dekker, A. Middelho, J. Electrochem. Soc. 117, 440 (1970) CrossRefGoogle Scholar
  14. 14.
    S. Ono, N. Masuko, Surf. Coat. Technol. 169, 139 (2003) CrossRefGoogle Scholar
  15. 15.
    H. Takahashi, M. Nagayama, Corros. Sci. 18, 911 (1978) CrossRefGoogle Scholar
  16. 16.
    K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gosele, Nano Lett. 2, 677 (2002) CrossRefADSGoogle Scholar
  17. 17.
    Y. Sui, J.M. Saniger, Mater. Lett. 48, 127 (2001) CrossRefGoogle Scholar
  18. 18.
    C. Sunseri, C. Spadaro, S. Piazza, M. Volpe, F. Quarto, J. Solid State Electrochem. 10, 416 (2006) CrossRefGoogle Scholar
  19. 19.
    A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, J. Membr. Sci. 319, 192 (2008) CrossRefGoogle Scholar
  20. 20.
    M. Almasi Kashi, A. Ramazani, M. Noormohammadi, M. Zarei, P. Marashi, J. Phys. D, Appl. Phys. 40, 7032 (2007) CrossRefADSGoogle Scholar
  21. 21.
    S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi, Jpn. J. Appl. Phys. 36, 7791 (1997) CrossRefADSGoogle Scholar
  22. 22.
    G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J.P. Celis, J. Electrochem. Soc. 149, D97 (2002) CrossRefGoogle Scholar
  23. 23.
    R. Hillebrand, F. Muller, K. Schwirn, W. Lee, M. Steinhart, ACS Nano 2, 913 (2008) CrossRefGoogle Scholar
  24. 24.
    R. Hillebrand, S. Grimm, R. Giesa, H.W. Schmidt, K. Mathwig, U. Gosele, M. Steinhart, Appl. Phys. Lett. 94, 164103 (2009) CrossRefADSGoogle Scholar
  25. 25.
    O. Jessensky, F. Muller, U. Gosele, Appl. Phys. Lett. 72, 1173 (1998) CrossRefADSGoogle Scholar
  26. 26.
    I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007) CrossRefADSGoogle Scholar
  27. 27.
    H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, L127 (1997) CrossRefGoogle Scholar
  28. 28.
    S. Ono, M. Saito, M. Ishiguro, H. Asoh, J. Electrochem. Soc. 151, B473 (2004) CrossRefGoogle Scholar
  29. 29.
    A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J. Appl. Phys. 84, 6023 (1998) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • I. Mínguez-Bacho
    • 1
  • S. Rodríguez-López
    • 1
    • 2
  • A. Asenjo
    • 1
  • M. Vázquez
    • 1
  • M. Hernández-Vélez
    • 1
    • 2
  1. 1.Instituto de Ciencia de Materiales de MadridConsejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Departamento de Física Aplicada, Universidad Autónoma de Madrid (UAM)Unidad Asociada GMNF-CSICMadridSpain

Personalised recommendations