Applied Physics A

, Volume 105, Issue 4, pp 875–880

A new model for deformed carbon nanotubes using Green’s function

Article

Abstract

A new method for modeling and analysis of deformed carbon nanotubes (CNTs) using Green’s function, is presented in this paper, for the first time. Using the proposed method, a new circuit model is obtained for the deformation region of a deformed single-walled CNT (SWCNT), which the values of its elements depend on the type of deformation and also the deformation parameters such as the coupling matrices and the energy variations of deformation region. The comparison between the obtained results from the analysis of proposed model and the literature gives a good match which approves the accuracy and correctness of the proposed model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Javey, J. Kong (eds.), Carbon Nanotube Electronics (Springer, Berlin, 2009) Google Scholar
  2. 2.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998) CrossRefGoogle Scholar
  3. 3.
    C.P. Poole, F.J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003) Google Scholar
  4. 4.
    D. Fathi, B. Forouzandeh, Time domain analysis of carbon nanotube interconnects based on distributed RLC model. Nano 4(1), 13–21 (2009) CrossRefGoogle Scholar
  5. 5.
    D. Fathi, B. Forouzandeh, A novel approach for stability analysis in carbon nanotube interconnects. IEEE Electron Device Lett. 30(5), 475–477 (2009) CrossRefGoogle Scholar
  6. 6.
    D. Fathi, B. Forouzandeh, S. Mohajerzadeh, R. Sarvari, Accurate analysis of carbon nanotube interconnects using transmission line model. Micro Nano Lett. 4(2), 116–121 (2009) CrossRefGoogle Scholar
  7. 7.
    R. Dehbashi, D. Fathi, S. Mohajerzadeh, B. Forouzandeh, Equivalent left-handed/right-handed metamaterial’s circuit model for the massless Dirac fermions with negative refraction. IEEE J. Sel. Top. Quantum Electron. 16(2), 394–400 (2010) CrossRefGoogle Scholar
  8. 8.
    L. Yang et al., Quantum transport through finite length double-walled carbon nanotubes. Phys. Status Solidi (b). Basic Solid State Phys. 243(6), 1306–1313 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    P.A. Orellana, M. Pacheco, Photon-assisted transport in a carbon nanotube calculated using Green’s function techniques. Phys. Rev. B, Condens. Matter Mater. Phys. 75(11), 115427 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Green’s function (many-body theory). http://en.Wikipedia.org/wiki
  11. 11.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995) Google Scholar
  12. 12.
    H. Bruus, K. Flensberg, Introduction to Many-Body Quantum Theory in Condensed Matter Physics (Oxford University Press, Oxford, 2003) Google Scholar
  13. 13.
    S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005) MATHGoogle Scholar
  14. 14.
    R. Moradian, A. Fathalian, Investigation of superconductivity in the single-walled carbon nanotubes. J. Phys. Chem. Solids 69(10), 2589–2593 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    D. Fathi, B. Forouzandeh, R. Sarvari, A new method for the analysis of transmission property in carbon nanotubes using Green’s function. Appl. Phys. A, Mater. Sci. Process. 102(1), 231–238 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Burke, An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. 2(1), 55–58 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    K. Uchida, M. Saitoh, Impact of axial strain on drain current of carbon-nanotube field-effect transistors with doped junctions. Appl. Phys. Lett. 91(20), 203520 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C.S. Jayanthi, M. Tang, S.-Y. Wu, Reversible electromechanical characteristics of carbon nanotubes under localprobe manipulation. Nature 405, 769–772 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    J. Cao, Q. Wang, H. Dai, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 90, 157601 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen, Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    J.Y. Park, Carbon Nanotube Electronics, Chapter 1: Band Structure and Electron Transport Physics of One-Dimensional SWCNTs (Springer, Berlin, 2009) Google Scholar
  22. 22.
    L. Yang, J. Han, Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 85, 154–157 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    A. Kleiner, S. Eggert, Band gaps of primary metallic carbon nanotubes. Phys. Rev. B, Condens. Matter Mater. Phys. 63(7), 0734081 (2001) CrossRefGoogle Scholar
  24. 24.
    X. Zhou et al., Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95(14), 146805 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    R. Landauer, Electrical resistance of disordered one-dimensional lattices. Philos. Mag. A 21(172), 863–867 (1970) ADSCrossRefGoogle Scholar
  26. 26.
    H. Li et al., Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringTarbiat Modares University (TMU)TehranIran
  2. 2.Department of Electrical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations