Applied Physics A

, Volume 105, Issue 3, pp 739–751 | Cite as

Impedance spectroscopy measurements to study physio-chemical processes in lime-based composites

  • R. J. Ball
  • G. C. Allen
  • G. Starrs
  • W. J. McCarter
Article

Abstract

The conduction and dielectric behaviour of two different grades of natural hydraulic lime is presented over the frequency range 1 Hz–1 MHz, with measurements taken over the initial six months after gauging with water. Samples containing embedded electrodes were exposed to both a natural atmosphere (20°C and 65% relative humidity) and a natural atmosphere with a carbon dioxide concentration maintained at 400 ppm which was used to accelerate the carbonation process. A decrease in relative dielectric permittivity and rise in conductivity, with increasing frequency, was observed at all stages over the time-scale presented. When plotted in the complex plane, the impedance featured a bulk response comprising two depressed semicircles and a low frequency spur, the latter being associated with the electrode/sample interface. The complex impedance plot, together with the application of an equivalent circuit model, indicated a dual arc feature with carbonation and hydration contributing to bulk impedance response. This study demonstrates the applicability of electrical property measurements to monitor the combined processes of hydration and carbonation in this group of materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.J. McCarter, S. Garvin, N. Bouzid, J. Mater. Sci. Lett.. 7, 1056–1057 (1988) CrossRefGoogle Scholar
  2. 2.
    C. Andrade, V.M. Blanco, A. Collazo, M. Keddam, X.R. Novoa, H. Takenouti, Electrochim. Acta 44, 4313–4318 (1999) CrossRefGoogle Scholar
  3. 3.
    W.J. McCarter, R. Brousseau, Cem. Concr. Res. 20(6), 891–900 (1990) CrossRefGoogle Scholar
  4. 4.
    W.J. McCarter, T.M. Chrisp, G. Starrs, Cem. Concr. Compos. 21, 277–283 (1999) CrossRefGoogle Scholar
  5. 5.
    W.J. McCarter, G. Starrs, T.M. Chrisp, in Structure and Performance of Cements, ed. by J. Bensted, P. Barnes (2002). (SPON) 442-56 ISBN 0 419 23330 X Google Scholar
  6. 6.
    C.A. Scuderi, T.O. Mason, H.M. Jennings, J. Mater. Sci.. 26, 349–353 (1991) CrossRefADSGoogle Scholar
  7. 7.
    P. Xie, P. Gu, Z. Xu, J.J. Beaudoin, Cem. Concr. Res.. 23, 359–367 (1993) CrossRefGoogle Scholar
  8. 8.
    B.J. Christensen, R.T. Coverdale, R.A. Olson, S.J. Ford, E.J. Garboczi, H.M. Jennings, T. Mason, J. Am. Ceram. Soc. 77, 2789–2804 (1994) CrossRefGoogle Scholar
  9. 9.
    D.E. Macphee, D.C. Sinclair, S.L. Stubbs, J. Mater. Sci. Lett. 15(18), 1566–1568 (1996) Google Scholar
  10. 10.
    D.E. Macphee, D.C. Sinclair, S.L. Stubbs, J. Am. Ceram. Soc. 80(11), 2876–2884 (1997) CrossRefGoogle Scholar
  11. 11.
    S.L. Cormack, D.E. Macphee, D.C. Sinclair, Adv. Cem. Res. 10(4), 151–160 (1998) Google Scholar
  12. 12.
    G.C. Allen, J. Allen, N. Elton, M. Farey, S. Holmes, P. Livesey, M. Radonjic, Hydraulic Lime Mortar for Stone, Brick and Block Masonry (Donhead, Shaftesbury, 2003). ISBN 1-873394-64-0 Google Scholar
  13. 13.
    G. Montes-Hernandez et al., J. Cryst. Growth 310, 2946–2953 (2008) CrossRefADSGoogle Scholar
  14. 14.
    R.J. Ball, A. El-Turki, W.J. Allen, G.C. Allen, Const. Mat. Proc. Inst. Civ. Eng.. CM2, 57–63 (2007) Google Scholar
  15. 15.
    R.J. Ball, G.C. Allen, Int. J. Sust. Eng. 1–7 (2009). doi: 10.1080/19397030903191219
  16. 16.
    A. El-Turki, M.A. Carter, M.A. Wilson, R.J. Ball, G.C. Allen, Constr. Build. Mater. 23, 1423–1428 (2009) CrossRefGoogle Scholar
  17. 17.
    O.C. Zienkiewicz, The Finite Element Method in Engineering Science (McGraw Hill, New York, 1971). ISBN 0070941386 MATHGoogle Scholar
  18. 18.
    P. Schwan, G. Schwarz, J. Maczuk, H. Pauly, J. Phys. Chem. 66, 2626–2635 (1962) CrossRefGoogle Scholar
  19. 19.
    J.B. Hasted, Aqueous Dielectrics (Chapman and Hall, London, 1973), p. 286 Google Scholar
  20. 20.
    G. Schwarz, J. Phys. Chem. 66, 2636–2642 (1962) CrossRefGoogle Scholar
  21. 21.
    W.C. Chew, P.N. Sen, J. Chem. Phys. 77(9), 4683–4693 (1982) CrossRefADSGoogle Scholar
  22. 22.
    B. Nettelblad, G.A. Niklasson, J. Mater. Sci. 32, 3783–3800 (1997) CrossRefGoogle Scholar
  23. 23.
    D. Daval, I. Martinez, J.-M. Guigner, R. Hellmann, J. Corvisier, N. Findling, C. Dominici, B. Goffé, F. Guyot, Am. Mineral. 94, 1707–1726 (2009) CrossRefGoogle Scholar
  24. 24.
    S. Kim, J.-H. Hwang, J. Korean Ceram. Soc. 43(3), 156–161 (2006) CrossRefMathSciNetGoogle Scholar
  25. 25.
    D.D. Edwards, J.-H. Hwang, S.J. Ford, T.O. Mason, Solid State Ion. 99(1–2), 85–93 (1997) CrossRefGoogle Scholar
  26. 26.
    S.J. Ford, J.-H. Hwang, J.D. Shane, R.A. Olson, G.M. Moss, H.M. Jennings, T.O. Mason, Adv. Cem. Based Mat. 5(2), 41–48 (1997) CrossRefGoogle Scholar
  27. 27.
    W.J. McCarter, S. Garvin, J. Phys. D, Appl. Phys. 22, 1773–1776 (1989) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. J. Ball
    • 1
    • 3
  • G. C. Allen
    • 1
  • G. Starrs
    • 2
  • W. J. McCarter
    • 2
  1. 1.Interface Analysis CentreUniversity of BristolBristolUK
  2. 2.School of the Built EnvironmentHeriot Watt UniversityEdinburghUK
  3. 3.Department of Architecture and Civil EngineeringUniversity of BathBathUK

Personalised recommendations