Applied Physics A

, 104:993

Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation

  • Seisuke Nakashima
  • Koji Sugioka
  • Katsumi Midorikawa
Article

Abstract

We have demonstrated spatially selective modification of the magnetic properties of transparent iron-oxide-doped glass by femtosecond- (fs-) laser irradiation and subsequent annealing. A near-infrared fs-laser beam with a wavelength of 775 nm was focused 1 mm below the surfaces of glass samples. This produces absorption peaks due to the formation of hole-trap centers in the irradiated region. Transparency was recovered after annealing at 450°C. A ferrimagnetic component was observed in the M–H curve even at room temperature, whereas the diamagnetic component dominated in the M–H curve of the as-prepared glass sample. This indicates that fs-laser irradiation enhanced the magnetization in the irradiated area. The irradiated and annealed glass sample also exhibited superparamagnetic blocking in the temperature dependence of the magnetization with a blocking temperature higher than room temperature. This change in magnetism is presumably due to local crystallization of ferrimagnetic nanoparticles, such as magnetite, induced by fs-laser irradiation and annealing. The magnetic and optical properties of glass that had been annealed but not irradiated by a fs-laser beam remained unchanged.

References

  1. 1.
    J. Qui, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu, K. Hirao, Appl. Phys. Lett. 81, 3040 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    K. Miura, J. Qiu, T. Mitsuyu, K. Hirao, Opt. Lett. 25, 408 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    B. Zhu et al., Opt. Express 15, 6069 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, Y. Ikuhara, Appl. Phys. Lett. 90, 163110 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    Q. Zhao, J. Qiu, X. Jiang, C. Zhao, C. Zhu, J. Appl. Phys. 96, 7122 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    M. Rini, A. Cavalleri, R.W. Schoenlein, R. López, L.C. Feldman, R.F. Haglund Jr., L.A. Boatner, T.E. Haynes, Opt. Lett. 30, 558 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    S. Iwai, S. Tanaka, K. Fujinuma, H. Kishida, H. Okamoto, Y. Tokura, Phys. Rev. Lett. 88, 057402 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    M. Matsubara, Y. Okimoto, T. Ogasawara, S. Iwai, Y. Tomioka, H. Okamoto, Y. Tokura, Phys. Rev. B 77, 094410 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    J.H. Kim, J. Kim, S.U. Lim, C.K. Kim, C.S. Yoon, G.J. Lee, Y.P. Lee, J. Appl. Phys. 99, 08G311 (2006) CrossRefGoogle Scholar
  11. 11.
    S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, K. Hirao, Appl. Phys. A 94, 83 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71, 3329 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Opt. Lett. 28, 1144 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    A. Bishay, J. Non-Cryst. Solids 3, 54 (1970) ADSCrossRefGoogle Scholar
  15. 15.
    J. Qiu, X. Jiang, Q. Zhao, C. Zhu, H. Inoue, J. Si, K. Hirao, Opt. Lett. 29, 370 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    J. Qiu, C. Zhu, T. Nakaya, J. Si, F. Ogura, K. Kojima, K. Hirao, Appl. Phys. Lett. 79, 3567 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, J. Phys., Condens. Matter 17, 137 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, S. Kanehira, Appl. Phys. A 93, 183 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Seisuke Nakashima
    • 1
    • 2
  • Koji Sugioka
    • 1
  • Katsumi Midorikawa
    • 1
  1. 1.RIKEN—Advanced Science InstituteWako-shiJapan
  2. 2.Yokohama National UniversityYokohama-shiJapan

Personalised recommendations