Applied Physics A

, Volume 104, Issue 3, pp 963–968

Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

  • A. P. Caricato
  • R. Buonsanti
  • M. Catalano
  • M. Cesaria
  • P. D. Cozzoli
  • A. Luches
  • M. G. Manera
  • M. Martino
  • A. Taurino
  • R. Rella
Article

Abstract

Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3–4 nm × 20–50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ∼150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ∼13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.I. Baraton, L. Marhari, J. Nanopart. Res. 6, 107 (2004) CrossRefGoogle Scholar
  2. 2.
    A. Vaseahsta, M. Vaclavikova, S.V. Gallios, P. Roy, O.P. Ummakarnchana, Sci. Technol. Adv. Mater. 8, 47 (2007) CrossRefGoogle Scholar
  3. 3.
    A. Fainberg, Science 255, 1531 (1992) ADSCrossRefGoogle Scholar
  4. 4.
    L.M. Dorozhkin, V.A. Nefedov, A.G. Sabelnikov, V.G. Sevastjanov, Sens. Actuators B 99, 568 (2004) CrossRefGoogle Scholar
  5. 5.
    J. Bardeen, W.H. Brattain, Bell Syst. Tech. J. 32, 1 (1953) Google Scholar
  6. 6.
    T. Seiyama, A. Kato, K. Fujishi, M. Nagatani, Anal. Chem. 34, 1502 (1962) CrossRefGoogle Scholar
  7. 7.
    T.P. Heusler, A. Lorke, P. Ifeacho, H. Wiggers, C. Schulz, J. Appl. Phys. 102, 124305 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    A. Gurlo, N. Barsan, M. Ivanovskays, U. Weimar, W. Goepel, Sens. Actuators B, Chem. 47, 92 (1998) CrossRefGoogle Scholar
  9. 9.
    L.J. LeGore, R.J. Lad, S.C. Moulzolf, J.F. Vetelino, B.G. Frederick, E.A. Kenik, Thin Solid Films 406, 79 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    X. Chu, D. Jiag, Y. Guo, Z.Ch. Zheng, Sens. Actuators 120, 177 (2006) CrossRefGoogle Scholar
  11. 11.
    M.S. Lin, H.J. Leu, Electroanalysis 17, 2068 (2005) CrossRefGoogle Scholar
  12. 12.
    A. Rothschild, F. Edelman, Y. Komem, F. Cosandey, Sensors & Actuators B 67, 282 (2000) CrossRefGoogle Scholar
  13. 13.
    J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Lett. 3, 929 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    H.Y. Jeong, D.-S. Lee, H.K. Choi, D.H. Lee, J.-E. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, S.-Y. Choi, Appl. Phys. Lett. 96, 213105 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    P.G. Su, C.-T. Lee, C.Y. Chou, K.-H. Cheng, Y.S. Chung, Sensors & Actuators B 139, 488 (2009) CrossRefGoogle Scholar
  16. 16.
    D.B. Chrisey, A. Piquè, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, Chem. Rev. 103, 553 (2003) CrossRefGoogle Scholar
  17. 17.
    R. Rella, J. Spadavecchia, M.G. Manera, S. Capone, A. Taurino, M. Martino, A.P. Caricato, T. Tunno, Sensors & Actuators B 127, 426 (2007) CrossRefGoogle Scholar
  18. 18.
    A.P. Caricato, M. Epifani, M. Martino, F. Romano, R. Rella, A. Taurino, T. Tunno, D. Valerini, J. Phys. D, Appl. Phys. 42, 095105 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    S. Acquaviva, M. Fernández, G. Leggieri, A. Luches, M. Martino, A. Perrone, Appl. Phys. A 69, S471 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, P.D. Cozzoli, J. Am. Chem. Soc. 130, 11223 (2008) CrossRefGoogle Scholar
  21. 21.
    S. S Mao, X. Chen, Chem. Rev. 107, 2891 (2007) CrossRefGoogle Scholar
  22. 22.
    S.L. Isley, R.L. Penn, J. Phys. Chem. B 110, 15134 (2006) CrossRefGoogle Scholar
  23. 23.
    X.Q. Gong, A. Selloni, Phys. Rev. B 76, 235307 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    M.W. Cross, W.J. Varhue, Nanotechnology 19, 435705 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    X. Su, Z. Zhang, M. Zhu, Appl. Phys. Lett. 88, 061913 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    T. Karabacak, J.S. DeLuca, P.-I. Wang, J. Appl. Phys. 99, 064304 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Wang, C. Dellago, J. Phys. Chem. B 107, 9214 (2003) CrossRefGoogle Scholar
  28. 28.
    S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, J. Phys. Chem. B 104, 6152 (2004) CrossRefGoogle Scholar
  29. 29.
    H. Zhang, J.F. Banfield, J. Phys. Chem. B l04, 3481 (2000) CrossRefGoogle Scholar
  30. 30.
    P.K. Naicker, P.T. Cummings, H. Zhang, J.F. Banfield, J. Phys. Chem. B 109, 15243 (2005) CrossRefGoogle Scholar
  31. 31.
    J.-G. Li, T. Ishigaki, Acta Mater. 52, 5143 (2008) CrossRefGoogle Scholar
  32. 32.
    M. Koelsch, S. Cassaignon, J.F. Guillemoles, J.P. Jolivet, Thin Solid Films 403, 312 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    S.-D. Mo, W.Y. Ching, Phys. Rev. B 51, 13023 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    J. Zhang, X. Xiao, J. Nan, J. Hazard. Mater. 176, 617 (2010) CrossRefGoogle Scholar
  35. 35.
    R. Zallen, M.P. Moret, Solid State Commun. 137, 154–157 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. P. Caricato
    • 1
  • R. Buonsanti
    • 2
  • M. Catalano
    • 3
  • M. Cesaria
    • 1
  • P. D. Cozzoli
    • 2
    • 4
  • A. Luches
    • 1
  • M. G. Manera
    • 3
  • M. Martino
    • 1
  • A. Taurino
    • 3
  • R. Rella
    • 3
  1. 1.Department of PhysicsUniversity of SalentoLecceItaly
  2. 2.National Nanotechnology Laboratory (NNL)Istituto di Nanoscienze del CNRLecceItaly
  3. 3.Institute for Microelectronics and MicrosystemsIMM-CNRLecceItaly
  4. 4.Department of Innovation EngineeringUniversity of SalentoLecceItaly

Personalised recommendations