Applied Physics A

, Volume 104, Issue 2, pp 559–565 | Cite as

Molecular dynamics simulations of cluster distribution from femtosecond laser ablation in aluminum

  • S. SonntagEmail author
  • C. Trichet Paredes
  • J. Roth
  • H.-R. Trebin


Femtosecond laser ablation and plume evolution of aluminum is investigated for various inhomogeneous laser pulses. For the simulations of the atoms the molecular dynamics code IMD is used. The ablated gas-phase is scanned by a cluster algorithm (DBSCAN), from which we gain a cluster size distribution of the ablated material. Per single pulse, only a small portion of the total volume evaporates into the gas phase. Therefore—to have reasonable statistics—we have to deal with huge samples (6×107 atoms). The ablation threshold is determined by comparing the depth of the holes to the applied fluence. Angular and velocity distributions of the plume are compared to experiments.


Laser Pulse Molecular Dynamic Simulation Laser Ablation Femtosecond Laser Ultrashort Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Agranat, S. Anisimov, S. Ashitkov, V. Zhakhovskii, N. Inogamov, K. Nishihara, Y. Petrov, V. Fortov, V. Khokhlov, Dynamics of plume and crater formation after action of femtosecond laser pulse. Appl. Surf. Sci. 253(15), 6276–6282 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    D. Amans, A.-C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18(2–3), 177–180 (2009) CrossRefADSGoogle Scholar
  3. 3.
    S. Amoruso, B. Toftmann, J. Schou, Thermalization of a uv laser ablation plume in a background gas: From a directed to a diffusionlike flow. Phys. Rev. E 69(5), 056403 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    S.I. Anisimov, N.A. Inogamov, Y.V. Petrov, V.A. Khokhlov, V.V. Zhakhovskii, K. Nishihara, M.B. Agranat, S.I. Ashitkov, P.S. Komarov, Thresholds for front-side ablation and rear-side spallation of metal foil irradiated by femtosecond laser pulse. Appl. Phys. A 92(4), 797–801 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultra short laser pulses. JETP Lett. 39(2) Google Scholar
  6. 6.
    S.I. Anisimov, B.S. Luk’yanchuk, A. Luches, An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime. Appl. Surf. Sci. 96–98, 24–32 (1996). Proceedings of Symposium F: Third International Symposium on Laser Ablation of the 1995 E-MRS Spring Conference CrossRefGoogle Scholar
  7. 7.
    S.I. Anisimov, V.V. Zhakhovski, N.A. Inogamov, K. Nishihara, Y.V. Petrov, V.A. Khokhlov, Ablated matter expansion and crater formation under the action of ultrashort laser pulse. J. Exp. Theor. Phys. 103(2), 183–197 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000) Google Scholar
  9. 9.
    D. Bouilly, D. Perez, L. Lewis, Damage in materials following ablation by ultrashort laser pulses: A molecular-dynamics study. Phys. Rev. B 76(18), 1–9 (2007) CrossRefGoogle Scholar
  10. 10.
    A. Bulgakov, Cluster emission under femtosecond laser ablation of silicon. Thin Solid Films 453–454, 557–561 (2004) CrossRefGoogle Scholar
  11. 11.
    B.N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, Mater. Sci. Process. 63(2), 109–115 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994) Google Scholar
  13. 13.
    S. Coon, W. Calaway, M. Pellin, J. White, New findings on the sputtering of neutral metal clusters. Surf. Sci. 298(1), 161–172 (1993) ADSCrossRefGoogle Scholar
  14. 14.
    M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984) ADSCrossRefGoogle Scholar
  15. 15.
    T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, X. Ni, Angular distributions of plume components in ultrafast laser ablation of metal targets. Appl. Phys. A. doi: 10.1007/s00339-010-5877-8
  16. 16.
    F. Ercolessi, J.B. Adams, Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 26(8), 583–588 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), ed. by U.M. Fayyad, E. Simoudis, J. Han (AAAI Press, Menlo Park, 1996), pp. 226–231 Google Scholar
  18. 18.
    G. Faussurier, C. Blancard, P. Silvestrelli, Evaluation of aluminum critical point using an ab initio variational approach. Phys. Rev. B 79(13), 1–7 (2009) CrossRefGoogle Scholar
  19. 19.
    D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, S. Eliezer, Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum. Phys. Rev. E 65(1), 1–8 (2001) CrossRefGoogle Scholar
  20. 20.
    F. Garrelie, J. Aubreton, A. Catherinot, Monte Carlo simulation of the laser-induced plasma plume expansion under vacuum: Comparison with experiments. J. Appl. Phys. 83(10), 5075 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    S. Grottel, G. Reina, C. Dachsbacher, T. Ertl, Coherent culling and shading for large molecular dynamics visualization. Comput. Graph. Forum 29(3), 953–962 (2010) CrossRefGoogle Scholar
  22. 22.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68(6), 064114 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    M. Kandyla, T. Shih, E. Mazur, Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum. Phys. Rev. B 75(21), 1–7 (2007) Google Scholar
  24. 24.
    I. Konomi, T. Motohiro, T. Asaoka, Angular distribution of atoms ejected by laser ablation of different metals. J. Appl. Phys. 106(1), 013107 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, F. Dausinger, S. Valette, C. Donnet, E. Audouard, Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses. Appl. Phys. A 80(7), 1589–1593 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    E. Lescoute, L. Hallo, B. Chimier, D. Hébert, V.T. Tikhonchuk, C. Stenz, J.-M. Chevalier, J.-L. Rullier, S. Palmier, Particles formation in an expanding plasma. Eur. Phys. J. 175(1), 159–164 (2009) Google Scholar
  27. 27.
    E. Leveugle, L.V. Zhigilei, Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J. Appl. Phys. 102(7), 074914 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    N.R. Madsen, E.G. Gamaly, A.V. Rode, B. Luther-Davies, Cluster formation through the action of a single picosecond laser pulse. J. Phys. Conf. Ser. 59, 762–768 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    A. Menéndez-Manjón, S. Barcikowski, G. Shafeev, V. Mazhukin, B. Chichkov, Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation. Laser Part. Beams 28(01), 45 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59(5), 3393–3407 (1999) ADSCrossRefGoogle Scholar
  31. 31.
    C. Momma, S. Nolte, B. Chichkov, A. Tunnermann, F. von Alvensleben, Precise laser ablation with ultra-short pulses, in Proceedings of European Meeting on Lasers and Electro-Optics (1997), p. 318 Google Scholar
  32. 32.
    S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals. Appl. Phys. A, Mater. Sci. Process. 61(1), 33–37 (1995) ADSCrossRefGoogle Scholar
  33. 33.
    N.H. Rizvi, E. Limited, U. Kingdom, Femtosecond laser micromachining: Current status and applications. Glass 50(50), 107–112 (2003) Google Scholar
  34. 34.
    A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, M. Gu, Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate. Appl. Phys. Lett. 95(18), 181103 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Metal ablation by picosecond laser pulses: A hybrid simulation. Phys. Rev. B 66(11), 115404 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    J. Stadler, R. Mikulla, H.-R. Trebin, IMD: a software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 8(5), 1131–1140 (1997). ADSCrossRefGoogle Scholar
  37. 37.
    B. Toftmann, J. Schou, J.G. Lunney, Dynamics of the plume produced by nanosecond ultraviolet laser ablation of metals. Phys. Rev. B 67(10), 104101 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    S. Valette, E. Audouard, R. Leharzic, N. Huot, P. Laporte, R. Fortunier, Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations. Appl. Surf. Sci. 239(3–4), 381–386 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    A. Vorobyev, V. Kuzmichev, N. Kokody, P. Kohns, J. Dai, C. Guo, Residual thermal effects in Al following single ns- and fs-laser pulse ablation. Appl. Phys. A 82(2), 357–362 (2005) ADSCrossRefGoogle Scholar
  40. 40.
    R.W. Waynant, Lasers in Medicine (CRC Press, Boca Raton, 2002) Google Scholar
  41. 41.
    A. Wuchner, M. Wahl, The formation of clusters during ion induced sputtering of metals. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 115(1–4), 581–589 (1996) ADSCrossRefGoogle Scholar
  42. 42.
    L. Zhigilei, Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl. Phys. A, Mater. Sci. Process. 76(3), 339–350 (2003) ADSCrossRefGoogle Scholar
  43. 43.
    L.V. Zhigilei, B.J. Garrison, Velocity distributions of molecules ejected in laser ablation. Appl. Phys. Lett. 71(4), 551 (1997) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Sonntag
    • 1
    Email author
  • C. Trichet Paredes
    • 1
  • J. Roth
    • 1
  • H.-R. Trebin
    • 1
  1. 1.Institute for Theoretical and Applied PhysicsUniversity of StuttgartStuttgartGermany

Personalised recommendations