Applied Physics A

, Volume 104, Issue 3, pp 953–958 | Cite as

Band-pass filters for THz spectral range fabricated by laser ablation

  • B. Voisiat
  • A. Bičiūnas
  • I. Kašalynas
  • G. Račiukaitis


The terahertz resonant metal-mesh filters were fabricated using the laser direct writing technique. UV picosecond laser was employed to cut matrixes of cross-shaped holes in stainless steel foil and molybdenum layer deposited on polyimide substrate. Different laser processing strategies were developed: holes were cut through in the metal foil and the molybdenum film was removed from the polyimide by laser ablation. Band-pass filters with a different center frequency were designed and fabricated. The regular shape, smoothness of edges and sharpness of corners of the cross-shaped holes in the metal were the main attributes for quality assessment for the laser ablation process. Spectral characteristics of the filters, determined by the mesh period, cross-arm length, and its width, were investigated by terahertz time-domain spectroscopy and conventional space-domain Fourier transform spectroscopy. Experimental data were supported by three-dimensional finite-difference time-domain simulations.


Polyimide Frequency Selective Surface Laser Direct Writing Stainless Steel Foil Polyimide Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ulrich, Appl. Opt. 7, 1987–1996 (1968) ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Melo, M.A. Kornberg, P. Kaufmann, M.H. Piazzetta, E.C. Bortolucci, M.B. Zakia, O.H. Bauer, A. Poglitsch, A.M.P. Alves da Silva, Appl. Opt. 47, 6064–6069 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    D.W. Porterfield, J.L. Hesler, R. Densing, E.R. Mueller, T.W. Crowe, R.M. Weikle II, Appl. Opt. 33, 6046–6052 (1994) ADSCrossRefGoogle Scholar
  4. 4.
    H.R. Park, Y.M. Park, H.S. Kim, J.S. Kyoung, M.A. Seo, D.J. Park, Y.H. Ahn, K.J. Ahn, D.S. Kim, Appl. Phys. Lett. 96, 121106 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    A. Piqué, D.B. Chrisey (eds.), Direct-Write Technologies for Rapid Prototyping Applications (Academic Press, San Diego, 2002) Google Scholar
  6. 6.
    A. Piqué, C.B. Arnold, B. Pratap, R.C.Y. Auyeung, H.S. Kim, D.W. Weir, R.A. Kant, Proc. SPIE 4977, 602–608 (2003) CrossRefGoogle Scholar
  7. 7.
    G. Račiukaitis, M. Brikas, M. Gedvilas, T. Rakickas, Appl. Surf. Sci. 253, 6570–6574 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    G. Račiukaitis, P. Gečys, J. Laser Micro Nanoeng., 5, 10–15 (2010) CrossRefGoogle Scholar
  9. 9.
    V. Pačebutas, A. Bičiūnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, A. Baltuška, Appl. Phys. Lett. 97, 031111 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    P. Ade, G. Pisano, C. Tucker, S. Weaver, Proc. SPIE 6275, 62750T (2006) ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Tarasov, V.D. Gromov, G.D. Bogomolov, E.A. Otto, L.S. Kuzmin, Instrum. Exp. Tech. 52, 74–78 (2009) CrossRefGoogle Scholar
  12. 12.
    A. Karlsson, D. Sjoberg, B. Widenberg, Prog. Electromagn. Res. 74, 141–155 (2007) CrossRefGoogle Scholar
  13. 13.
    D.D. Nolte, A.E. Lange, P.L. Richards, Appl. Opt. 24, 1541–1545 (1985) ADSCrossRefGoogle Scholar
  14. 14.
    A. Lüker, O. Sternberg, H. Hein, J. Schulz, K.D. Möller, Infrared Phys. Technol. 45, 153–157 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    B. Widenberg, Thick frequency selective structures. Ph.D. thesis, Lund Institute of Technology (2003), ISSN 1402-8662 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • B. Voisiat
    • 1
  • A. Bičiūnas
    • 1
  • I. Kašalynas
    • 1
  • G. Račiukaitis
    • 1
  1. 1.Center for Physical Sciences and TechnologyVilniusLithuania

Personalised recommendations