Applied Physics A

, 104:947 | Cite as

z-Scan characterization of zwitterionic chromophores for optoelectronic switching

  • U. Skrzypczak
  • G. V. M. Williams
  • M. Miclea
  • M. D. H. Bhuiyan
  • S. Janseens
  • S. Schweizer
Article

Abstract

Single beam z-scan measurements have been made on films containing amorphous polycarbonate and the zwitterionic chromophore, PYR-3, that has a very high second order nonlinear optical (NLO) figure of merit. The third order NLO figure of merit is ≈1.6 at 1030 nm and is comparable to that found in organic compounds optimized for high n2 values. The two-photon absorption coefficient is 2.1×10−12 m/W, which is very low and advantageous for NLO device applications. The third order NLO refractive index is −1.4×10−18 m2/W.

References

  1. 1.
    A.J. Kay, A.D. Woolhouse, Y. Zhao, K. Clays, Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore. J. Mater. Chem. 14(8), 1321–1330 (2004) CrossRefGoogle Scholar
  2. 2.
    G.J. Smith, A.P. Middleton, D.J. Clarke, A. Teshome, A.J. Kay, M.D.H. Bhuiyan, I. Asselberghs, K. Clays, The effect of solvent on the excited vibronic states and first hyperpolarizability of “push-pull” merocyanines. Opt. Mater. 32(9), 1237–1243 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    L. Dalton, Nonlinear optical polymeric materials: from chromophore designto commercial applications, in Advances in Polymer Science, ed. by K.S. Lee. Polymers for Photonic Applications, vol. I (CRC Press, Boca Raton, 2002), pp. 1–86 Google Scholar
  4. 4.
    S.G. Raymond, G.V.M. Williams, B. Lochocki, M.D.H. Bhuiyan, A.J. Kay, J.W. Quilty, The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores. J. Appl. Phys. 105(11), 113123 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    J.W. Quilty, G.V.M. Williams, D. Bhuiyan, M. Ashraf, S. Raymond, A.J. Kay, The electro-optic response of zwitterionic non-linear optical (NLO) materials. AIP Conf. Proc. 1151, 79–81 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, Basel, 1995) Google Scholar
  7. 7.
    S.R. Marder, L.T. Cheng, B.G. Tiemann, A.C. Friedli, M. Blanchard-Desce, J.W. Perry, J. Skindhøj, Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity. Science 263(5146), 511–514 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n 2 measurements. Opt. Lett. 14, 955–957 (1989) ADSCrossRefGoogle Scholar
  9. 9.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990) ADSCrossRefGoogle Scholar
  10. 10.
    E.W. Van Stryland, M. Sheik-Bahae, Z-scan measurements of optical nonlinearities, in Characterization Techniques and Tabulations for Organic Nonlinear Materials, ed. by M.G. Kuzyk, C.W. Dirk. Optical Engineering, vol. 60 (CRC Press, Boca Raton, 1998), pp. 655–692 Google Scholar
  11. 11.
    A. Gnoli, L. Razzari, M. Righini, Z-scan measurements using high repetition rate lasers. Opt. Express 13(20), 7976–7981 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    B.A. Reinhard, L.L. Brott, S.J. Clarson, A.G. Dillard, J.C. Bhatt, R. Kannan, L. Yuan, G.S. He, P.N. Prasad, Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem. Mater. 10(7), 1863–1874 (1998) CrossRefGoogle Scholar
  13. 13.
    P. Audebert, K. Kamada, K. Matsunaga, K. Ohta, The third-order NLO properties of D-π-A molecules with changing a primary amino group into pyrrole. Chem. Phys. Lett. 367(1–2), 62–71 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Hales, S. Zheng, S. Barlow, S.R. Marder, J.W. Perry, Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing. J. Am. Chem. Soc. 128(35), 11362–11363 (2006) CrossRefGoogle Scholar
  15. 15.
    Q. Chen, E.H. Sargent, N. Leclerc, A.J. Attias, Wavelength dependence and figures of merit of ultrafast third-order optical nonlinearity of a conjugated 3,3′-bipyridine derivative. Appl. Opt. 42(36), 7235 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    W.-P. Zang, J.-G. Tian, Z.-B. Liu, W.-Y. Zhou, F. Song, C.-P. Zhang, Analytic solutions to Z-scan characteristics of thick media with nonlinear refraction and nonlinear absorption. J. Opt. Soc. Am. B 21(1), 63–66 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    V. Mizrahi, K.W. DeLong, G.I. Stegeman, Two-photon-absorption as a limitation to all-optical switching. Opt. Lett. 14(20), 1140–1142 (1989) ADSCrossRefGoogle Scholar
  18. 18.
    A. Nag, D. Goswami, Solvent effects on two-photon absorption and fluorescence of rhodamine dyes. J. Photochem. Photobiol. A, Chem. 206(2–3), 188–197 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • U. Skrzypczak
    • 1
  • G. V. M. Williams
    • 2
  • M. Miclea
    • 1
  • M. D. H. Bhuiyan
    • 2
  • S. Janseens
    • 2
  • S. Schweizer
    • 1
    • 3
  1. 1.Centre for Innovation Competence SiLi-nano®Martin Luther University of Halle-WittenbergHalle (Saale)Germany
  2. 2.Industrial Research Ltd.Lower HuttNew Zealand
  3. 3.Fraunhofer Center for Silicon PhotovoltaicsHalle (Saale)Germany

Personalised recommendations