Advertisement

Applied Physics A

, 104:15 | Cite as

Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Au-targets

  • C. Kern
  • M. Zürch
  • J. Petschulat
  • T. Pertsch
  • B. Kley
  • T. Käsebier
  • U. Hübner
  • C. SpielmannEmail author
Rapid communication

Abstract

The combination of high-field physics with nano-plasmonics has proven to be feasible in producing high harmonics of intense laser radiation from noble gases, assisted by the field-enhancement effect in the proximity of metallic nano-antennas. However, the intensity region where harmonics can be generated without irreversible damage to these delicate structures is rather narrow. We explore the damage threshold of gold targets that exhibit regular structures on a nanoscopic scale, either explicitly resonant to the used laser frequency, or off-resonance. These are compared to values for bulk material in order to gain insight into the role of plasmonic resonances in the response of solid targets on intense laser radiation. We find that the presence of such a resonance lowers the threshold fluence (J/cm2) where global structural damage sets in by about an order of magnitude. Statistical deviations either in local pulse energy of the damage inducing laser radiation or in the exact resonance behaviour of singular structures prove to be limited. These results should serve as a guideline for future experiments working near the damage threshold of more sophisticated antenna designs.

Keywords

SERS Single Shot Damage Threshold Ablation Threshold Damage Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72(2), 545 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    T. Pfeifer, C. Spielmann, G. Gerber, Rep. Prog. Phys. 69(2), 443–505 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    G. Mourou, Appl. Phys. B 65(2), 205–211 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424(6950), 824–830 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    A. Polman, Science 322(5903), 868–869 (2008) CrossRefGoogle Scholar
  6. 6.
    R. Petry, M. Schmitt, J. Popp, Chem. Phys. Chem. 4(1), 14–30 (2003) CrossRefGoogle Scholar
  7. 7.
    J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuators B, Chem. 54(1–2), 3–15 (1999) CrossRefGoogle Scholar
  8. 8.
    S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453(7196), 757–760 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    R.D. Grober, R.J. Schoelkopf, D.E. Prober, Appl. Phys. Lett. 70(11), 1354–1356 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Nano Lett. 4(5), 957–961 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    A. Sundaramurthy, K.B. Crozier, G.S. Kino, D.P. Fromm, P.J. Schuck, W.E. Moerner, Phys. Rev. B 72(16), 165409 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, R. Bratschitsch, Nat. Photonics 2(4), 230–233 (2008) CrossRefGoogle Scholar
  13. 13.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94(1) (2005) Google Scholar
  14. 14.
    M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49(3), 2117 (1994) ADSCrossRefGoogle Scholar
  15. 15.
    P.B. Corkum, Phys. Rev. Lett. 71(13), 1994 (1993) ADSCrossRefGoogle Scholar
  16. 16.
    J. Kaspar, A. Luft, S. Nolte, M. Will, E. Beyer, J. Laser Appl. 18(2), 85–92 (2006) CrossRefGoogle Scholar
  17. 17.
    M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80(18), 4076–4079 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Phys. Rev. Lett. 61(25), 2886 (1988) ADSCrossRefGoogle Scholar
  19. 19.
    B.N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, Appl. Phys. A, Mater. Sci. Process. 63(2), 109–115 (1996) ADSCrossRefGoogle Scholar
  20. 20.
    J. Krüger, D. Dufft, R. Koter, A. Hertwig, Appl. Surf. Sci. 253(19), 7815–7819 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5(3), 648–659 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    X. Ni, C.-Y. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, Z. Zhang, Appl. Surf. Sci. 253(3), 1616–1619 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, Appl. Surf. Sci. 150(1–4), 101–106 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    J. Petschulat, D. Cialla, N. Janunts, C. Rockstuhl, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Popp, A. Tünnermann, F. Lederer, T. Pertsch, Opt. Express 18(5), 4184–4197 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    D. Cialla, R. Siebert, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tünnermann, T. Pertsch, B. Dietzek, J. Popp, Anal. Bioanal. Chem. 394(7), 1811–1818 (2009) CrossRefGoogle Scholar
  26. 26.
    A. Plech, V. Kotaidis, M. Lorenc, J. Boneberg, Nat. Phys. 2(1), 44–47 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Kern
    • 1
  • M. Zürch
    • 1
  • J. Petschulat
    • 2
  • T. Pertsch
    • 2
  • B. Kley
    • 2
  • T. Käsebier
    • 2
  • U. Hübner
    • 3
  • C. Spielmann
    • 1
    • 4
    Email author
  1. 1.Institut für Optik und Quantenelektronik, Physikalisch-Astronomische FakultätFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institut für Angewandte PhysikFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Institut für Photonische TechnologienJenaGermany
  4. 4.Helmholtzinstitut JenaJenaGermany

Personalised recommendations