Applied Physics A

, Volume 104, Issue 3, pp 793–799 | Cite as

Femtosecond and picosecond near-field ablation of gold nanotriangles: nanostructuring and nanomelting

  • A. Kolloch
  • T. Geldhauser
  • K. Ueno
  • H. Misawa
  • J. Boneberg
  • A. Plech
  • P. Leiderer
Article

Abstract

We report on recent insights into the interaction between ultra-fast laser pulses and plasmonic nanoparticles. We discuss femtosecond near-field ablation as a simple but versatile tool for the nanoscale modification of surfaces and the high-resolution measurement of a nanostructure’s near field. Two model systems are presented, illustrating the complexity of near-field distributions. Furthermore, finite difference time domain calculations in combination with absorption spectra provide a deeper insight into the factors influencing the near-field distribution. For the first time, an almost perfect agreement between the measured ablation pattern and experiment has been reached for gold triangles with a side length around 500 nm. Additionally, the results from picosecond laser irradiated plasmonic structures display a new regime of nanoscale laser material processing. We present first results showing nanometre confined melting induced by laser pulses.

References

  1. 1.
    H.-J. Muenzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, J. Boneberg, J. Microsc. 202, 129 (2001) MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.N. Farahani, D.W. Pohl, H.-J. Eisler, B. Hecht, Phys. Rev. Lett. 95, 017402 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    S. Nie, S.R. Emory, Science 275, 1102 (1997) CrossRefGoogle Scholar
  4. 4.
    A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, J. Phys. Chem. B 109, 11279 (2005) CrossRefGoogle Scholar
  5. 5.
    T. Hanke, G. Krauss, D. Traeutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Phys. Rev. Lett. 103, 257404 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mater. 9, 193 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    R. Hillenbrand, F. Keilmann, P. Hanarp, D.S. Sutherland, J. Aizpurua, Appl. Phys. Lett. 83, 368 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    P. Kuehler, F.J. Garcia de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, J. Siegel, Small 5, 1825 (2009) CrossRefGoogle Scholar
  9. 9.
    J. Siegel, D. Puerto, J. Solis, F.J. Garcia de Abajo, C.N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kuehler, M. Mosbacher, P. Leiderer, Appl. Phys. Lett. 96, 193108 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. Chang, S.K. Gray, G.P. Wiederrecht, G.C. Schatz, Nano Lett. 5, 615 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, H. Misawa, J. Am. Chem. Soc. 130, 6928 (2008) CrossRefGoogle Scholar
  12. 12.
    N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, H. Misawa, J. Phys. Chem. C 113, 1147 (2009) CrossRefGoogle Scholar
  13. 13.
    P. Leiderer, C. Bartels, J. Konig-Birk, M. Mosbacher, J. Boneberg, Appl. Phys. Lett. 85, 5370 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    J. Boneberg, J. Koenig-Birk, H.-J. Muenzer, P. Leiderer, K.L. Shuford, G.C. Schatz, Appl. Phys. A, Mater. Sci. Process. 89, 299 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    A. Plech, P. Leiderer, J. Boneberg, Laser Photonics Rev. 3, 435 (2009) CrossRefGoogle Scholar
  16. 16.
    F. Burmeister, C. Schaefle, T. Matthes, M. Boemisch, J. Boneberg, P. Leiderer, Langmuir 13, 2983 (1997) CrossRefGoogle Scholar
  17. 17.
    H.W. Deckman, J.H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    B. Keilhofer, C. Bechinger, J. Boneberg, P. Leiderer, F. Burmeister, C. Schaefle, Adv. Mater. 10, 495 (1998) CrossRefGoogle Scholar
  19. 19.
    A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig, Nano Lett. 4, 1359 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Small 1, 439 (2005) CrossRefGoogle Scholar
  21. 21.
    M.C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, H. Giessen, Small 5, 400 (2009) CrossRefGoogle Scholar
  22. 22.
    T. Geldhauser, S. Ikegaya, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, H. Misawa, Plasmonics 6, 207 (2011). doi:10.1007/s11468-010-9189-9 CrossRefGoogle Scholar
  23. 23.
    A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, J. Boneberg, Science 309, 2043 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    W. Huang, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128, 13330 (2006) CrossRefGoogle Scholar
  25. 25.
    W. Huang, M.A. El-Sayed, Eur. Phys. J. – Spec. Top 153, 223 (2008) Google Scholar
  26. 26.
    C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983) ADSCrossRefGoogle Scholar
  27. 27.
    K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde, Phys. Rev. B, Condens. Matter 51, 14186 (1995) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Kolloch
    • 1
  • T. Geldhauser
    • 2
  • K. Ueno
    • 2
  • H. Misawa
    • 2
  • J. Boneberg
    • 1
  • A. Plech
    • 3
  • P. Leiderer
    • 1
  1. 1.University of KonstanzKonstanzGermany
  2. 2.Research Institute of Electronic ScienceHokkaido UniversitySapporoJapan
  3. 3.Karlsruhe Institut für TechnologieKarlsruheGermany

Personalised recommendations