Advertisement

Applied Physics A

, 104:921 | Cite as

Maple prepared organic heterostructures for photovoltaic applications

  • A. Stanculescu
  • M. Socol
  • G. Socol
  • I. N. Mihailescu
  • M. Girtan
  • F. Stanculescu
Article

Abstract

In this study, we present the deposition of ZnPc, Alq3, and PTCDA thin films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. We also report the realisation of multilayer structures, made by the successive application of MAPLE. The films have been characterized by spectroscopic (UV–VIS and Photoluminescence) and microscopic (SEM and AFM) methods, and the effect of different deposition conditions such as fluence, number of pulses, and target concentration on the properties has been analysed. This paper also presents some investigations on the electrical conduction in sandwich type structures ITO or Si/organic layer/Au or Cu and ITO/double organic layer/Cu, emphasising the dominant effect of the height of the energetic barriers at the inorganic/organic and organic/organic interfaces.

Keywords

Target Concentration Roughness Average Fuse Quartz Photovoltaic Application Metallic Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.D. Wang, H.S. Kwok, Thin Solid Films 363, 58 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    A. Pique, P. Wu, B.R. Ringeisen, D.M. Bubb, J.S. Melinger, R.A. McGill, D.B. Chrisey, Appl. Surf. Sci. 186, 408 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    A. Luches, A.P. Caricato, Fundamentals and applications of MAPLE, in Laser-Surface Interactions for New Materials Production Tailoring, Structure and Properties, ed. by A. Miotello, P.M. Ossi. Series in Materials Science, vol. 130 (Springer, Berlin, 2010), p. 203 CrossRefGoogle Scholar
  4. 4.
    A. Stanculescu, F. Stanculescu, L. Tugulea, M. Socol, Mater. Sci. Forum 514–516, 956 (2006) CrossRefGoogle Scholar
  5. 5.
    L. Gaffo, M.R. Cordeiro, A.R. Freitas, W.C. Moreira, E.M. Girotto, V. Zucolotto, J. Mater. Sci. 45, 1366 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    J. Reif, Basic physics of femtosecond laser ablation, in Laser-Surface Interactions for New Materials Production Tailoring, Structure and Properties, ed. by A. Miotello, P.M. Ossi. Springer Series in Materials Science, vol. 130 (Springer, Berlin, 2010), p. 19 CrossRefGoogle Scholar
  7. 7.
    M.A. Hernandez-Perez, C. Garapon, C. Champeaux, A.W. Coleman, L. Guy, J. Phys. IV 138, 181 (2006) Google Scholar
  8. 8.
    A. Stanculescu, O. Rasoga, N. Preda, M. Socol, F. Stanculescu, I. Ionita, A.-M. Albu, G. Socol, Ferroelectrics 389, 159 (2009) CrossRefGoogle Scholar
  9. 9.
    G. Socol, I.N. Mihailescu, A.-M. Albu, S. Antohe, F. Stanculescu, A. Stanculescu, L. Mihut, N. Preda, O. Rasoga, Appl. Surf. Sci. 255, 5611 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    A. Stanculescu, A.-M. Albu, G. Socol, F. Stanculescu, M. Socol, N. Preda, O. Rasoga, M. Girtan, I. Iulian, J. Optoelectron. Adv. Mater. 12, 731 (2010) Google Scholar
  11. 11.
    H. Fujiwara, Spectroscopic Ellipsometry. Principles and Applications (Wiley, New York, 2007) Google Scholar
  12. 12.
    M. Sadrai, L. Hadel, R.R. Sauers, S. Husain, K. Krogh-Jespersen, J.D. Westbrook, G.R. Bird, J. Phys. Chem. 96, 7988 (1992) CrossRefGoogle Scholar
  13. 13.
    Z.-A. Jian, Y.-Z. Luo, J.-M. Chung, S.-J. Tang, M.-C. Kuo, J.-L. Shen, K.-C. Chiu, C.-S. Yang, W.-C. Chou, C.-F. Dai, J.-M. Yeh, J. Appl. Phys. 101, 123708 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    S. Senthilarasu, R. Sathyamoorthy, S. Latitha, A. Subbarayan, K. Natarajan, Sol. Energy Mater. Sol. Cells 82, 179 (2004) CrossRefGoogle Scholar
  15. 15.
    A.J. Ferguson, T.S. Jones, J. Phys. Chem. B 110, 6891 (2006) CrossRefGoogle Scholar
  16. 16.
    M. Haas, Liu Shi-Xia, A. Kahnt, C. Leiggener, D.M. Guldi, A. Hauser, S. Decurtins, J. Org. Chem. 72, 7533 (2007) CrossRefGoogle Scholar
  17. 17.
    R. Schlaf, B.A. Parkinson, P.A. Lee, K.W. Nebesny, N.R. Amstrong, J. Phys. Chem. B 103, 2984 (1999) CrossRefGoogle Scholar
  18. 18.
    P.C.P. Hrudey, K.L. Westra, M.J. Brett, Adv. Mater. 18, 224 (2006) CrossRefGoogle Scholar
  19. 19.
    E. Centurioni, D. Iencinella, IEEE Electron Device Lett. 24, 177 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    A. Stanculescu, F. Stanculescu, Thin Solid Films 515, 8733 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    F.T. Reis, D. Mencaraglia, S. Oould Saad, I. Séguy, M. Oukachmih, P. Jolinat, P. Destruel, Synth. Met. 138, 33 (2003) CrossRefGoogle Scholar
  22. 22.
    P.A. Anderson, Phys. Rev. 76, 388 (1949) ADSCrossRefGoogle Scholar
  23. 23.
    W.M.H. Sachtler, G.J.H. Dorgelo, A.A. Holscher, Surf. Sci. 5, 221 (1966) ADSCrossRefGoogle Scholar
  24. 24.
    R. Schlaf, B.A. Parkinson, P.A. Lee, K.W. Nebesny, N.R. Amstrong, J. Phys. Chem. B 103, 2984 (1999) CrossRefGoogle Scholar
  25. 25.
    M. Linares, D. Beljonne, J. Cornil, K. Lancaster, J.-L. Bredas, S. Verlaak, A. Mityashin, P. Heremans, A. Fuchs, Ch. Lennartz, J. Phys. Chem. C 114, 3215 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Stanculescu
    • 1
  • M. Socol
    • 1
  • G. Socol
    • 2
  • I. N. Mihailescu
    • 2
  • M. Girtan
    • 3
  • F. Stanculescu
    • 4
  1. 1.National Institute of Materials PhysicsBucharest-MagureleRomania
  2. 2.National Institute for LaserPlasma and Radiation PhysicsBucharest-MagureleRomania
  3. 3.Laboratoire de Photonique d’AngersUniversité d’AngersAngersFrance
  4. 4.Faculty of PhysicsUniversity of BucharestBucharest-MagureleRomania

Personalised recommendations