Applied Physics A

, 104:845 | Cite as

The effects of thermal annealing on the structure and the electrical transport properties of ultrathin gadolinia-doped ceria films grown by pulsed laser deposition

  • K. Rodrigo
  • S. Heiroth
  • N. Pryds
  • L. Theil Kuhn
  • V. Esposito
  • S. Linderoth
  • J. Schou
  • T. Lippert
Article

Abstract

Ultrathin crystalline films of 10 mol% gadolinia-doped ceria (CGO10) are grown on MgO (100) substrates by pulsed laser deposition at a moderate temperature of 400°C. As-deposited CGO10 layers of approximately 4 nm, 14 nm, and 22 nm thickness consist of fine grains with dimensions ≤∼11 nm. The films show high density within the thickness probed in the X-ray reflectivity experiments. Thermally activated grain growth, density decrease, and film surface roughening, which may result in the formation of incoherent CGO10 islands by dewetting below a critical film thickness, are observed upon heat treatment at 400°C and 800°C. The effect of the grain coarsening on the electrical characteristics of the layers is investigated and discussed in the context of a variation of the number density of grain boundaries. The results are evaluated with regard to the use of ultrathin CGO10 films as seeding templates for the moderate temperature growth of thick solid electrolyte films with improved oxygen transport properties.

References

  1. 1.
    J.A. Kilner, Solid State Ion. 129, 13 (2000) CrossRefGoogle Scholar
  2. 2.
    M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ion. 129, 63 (2000) CrossRefGoogle Scholar
  3. 3.
    B.C.H. Steele, Solid State Ion. 129, 95 (2000) CrossRefGoogle Scholar
  4. 4.
    R.T. Leah, N.P. Brandon, P. Aguiar, J. Power Sources 145, 336 (2005) CrossRefGoogle Scholar
  5. 5.
    H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, F.B. Prinz, J. Electrochem. Soc. 154, B20 (2007) CrossRefGoogle Scholar
  6. 6.
    S. Rey-Mermet, P. Muralt, Mater. Res. Soc. Symp. Proc. 972, 0972-AA07-10-BB08 (2007) Google Scholar
  7. 7.
    A. Bieberle-Hütter, D. Beckel, A. Infortuna, U.P. Muecke, J.L.M. Rupp, L.J. Gauckler, S. Rey-Mermet, P. Muralt, N.R. Bieri, N. Hotz, M.J. Stutz, D. Poulikakos, P. Heeb, P. Müller, A. Bernard, R. Gmür, T. Hocker, J. Power Sources 177, 123 (2008) CrossRefGoogle Scholar
  8. 8.
    K. Rodrigo, S. Heiroth, M. Döbeli, N. Pryds, S. Linderoth, J. Schou, T. Lippert, J. Optoelectron. Adv. Mater. 12, 511 (2010) Google Scholar
  9. 9.
    A. Infortuna, A. Harvey, L. Gauckler, Adv. Funct. Mater. 18, 127 (2008) CrossRefGoogle Scholar
  10. 10.
    R. Gerhardt, A.S. Nowick, J. Am. Ceram. Soc. 69, 647 (1986) CrossRefGoogle Scholar
  11. 11.
    P.R. Willmott, Progr. Surf. Sci. 76, 163 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    K. Rodrigo, S. Heiroth, M. Lundberg, N. Bonanos, K. Mohan Kant, N. Pryds, L. Theil Kuhn, V. Esposito, S. Linderoth, J. Schou, T. Lippert, Appl. Phys. A 101, 601 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    X. Guo, E. Vasco, S. Mi, K. Szot, E. Waschsman, R. Waser, Acta Mater. 53, 5161 (2005) CrossRefGoogle Scholar
  14. 14.
    C.-Y. Zhang, X.-M. Ki, X. Zhang, W.-D. Yu, J.-L. Zhao, J. Cryst. Growth 290, 67 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    T. Chaudhuri, P. Spagnol, S. Phok, R. Bhattacharya, Physica C 443, 81 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    N. Pryds, B. Toftmann, J.B. Bilde-Sørensen, J. Schou, S. Linderoth, Appl. Surf. Sci. 252, 4882 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    M. Björck, G. Andersson, J. Appl. Crystallogr. 40, 1174 (2007) CrossRefGoogle Scholar
  18. 18.
    G.F. Vander Voort, F.J. Warmuth, S.M. Purdy, A. Szirmae (eds.), Metallography—Past, Present, and Future 75th Anniversary Volume (American Society for Testing and Materials, Philadelphia, 1993) Google Scholar
  19. 19.
    K.V. Hansen, K. Norrman, M. Mogensen, Surf. Interface Anal. 38, 911 (2006) CrossRefGoogle Scholar
  20. 20.
    Y.M. Chiang, E.B. Lavik, D.A. Blom, Nanostruct. Mater. 9, 633 (1997) CrossRefGoogle Scholar
  21. 21.
    K. Rodrigo, H.-J. Wang, S. Heiroth, N. Pryds, L. Theil Kuhn, V. Esposito, S. Linderoth, J. Schou, T. Lippert, Appl. Surf. Sci. 257, 5341 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    D.L. Sedin, K.L. Rowen, Appl. Surf. Sci. 182, 40 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    J. Maier, Solid State Ion. 157, 327 (2003) CrossRefGoogle Scholar
  24. 24.
    I. Kosacki, T. Suzuki, V. Petrovsky, H.U. Anderson, Solid State Ion. 136–137, 1225 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • K. Rodrigo
    • 1
  • S. Heiroth
    • 2
  • N. Pryds
    • 1
  • L. Theil Kuhn
    • 1
  • V. Esposito
    • 1
  • S. Linderoth
    • 1
  • J. Schou
    • 3
  • T. Lippert
    • 2
  1. 1.Fuel Cells and Solid State Chemistry Division, Risø DTUTechnical University of DenmarkRoskildeDenmark
  2. 2.General Energy Research DepartmentPaul Scherrer InstituteVilligen PSISwitzerland
  3. 3.Department of Photonics EngineeringTechnical University of DenmarkRoskildeDenmark

Personalised recommendations