Applied Physics A

, Volume 104, Issue 3, pp 815–819 | Cite as

The effect of laser wavelength on heating of ablated carbon plume

Open Access
Article

Abstract

The effect of laser wavelength on heating of the ablated carbon plume is studied. The plasma absorption coefficients are calculated in order to analyze the results and an experiment is conducted using the first, second, and third harmonic of a Nd:YAG laser. Plasma temperature and electron density in the early phase of expansion in vacuum are studied as a function of distance from the target. The calculations show that the ratio between absorption coefficients for 1064, 532, and 355 nm is approximately 9:2:1. The experimental results do not agree well with the theoretical predictions. Indeed, the plasma temperatures are highest in the case of 1064 nm but no clear differences between 532 nm and 355 nm have been found.

References

  1. 1.
    S.S. Harilal, C.V. Bindhu, R.C. Issac, V.P.N. Nampoori, C.P.G. Vallabhan, J. Appl. Phys. 82, 2140 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    J. Hermann, C. Vivien, A.P. Carricato, C. Boulmer-Leborgne, Appl. Surf. Sci. 127–129, 645 (1998) CrossRefGoogle Scholar
  3. 3.
    Y. Yamagata, A. Sharma, J. Narayan, R.M. Mayo, J.W. Newman, K. Ebihara, J. Appl. Phys. 88, 6861 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    P. Loiseleur, T.N. Hansen, J. Larour, J.G. Lunney, Appl. Surf. Sci. 197–198, 164 (2002) CrossRefGoogle Scholar
  5. 5.
    H. Luna, J. Dardis, D. Doria, J.T. Costello, Braz. J. Phys. 37, 1301 (2007) Google Scholar
  6. 6.
    J. Hoffman, W. Mróz, A. Prokopiuk, Z. Szymanski, Appl. Phys. A, Mater. Sci. Process. 92, 921 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    J. Richter, in Plasma Diagnostics, ed. by A.A. Lochte-Holtgreven (North Holland, Amsterdam, 1968) Google Scholar
  8. 8.
    F. Cabannes, J.C. Chapelle, in Reactions Under Plasma Conditions, ed. by M. Venugopalan (Wiley, New York, 1971) Google Scholar
  9. 9.
    H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964) Google Scholar
  10. 10.
    S.N. Nahar, NORAD-Atomic-Data (Nahar_OSU_Radiative_Atomic_Data); http://www.astronomy.ohio-state.edu/~nahar/nahar_radiativeatomicdata/index.html
  11. 11.
    L.D. Thomas, R.K. Nesbet, Phys. Rev. A 12, 2378 (1975) ADSCrossRefGoogle Scholar
  12. 12.
    C.J. Knight, AIAA J. 17, 519 (1979) ADSCrossRefGoogle Scholar
  13. 13.
    N.M. Bulgakova, A. Bulgakov, L.P. Babich, Appl. Phys. A, Mater. Sci. Process. 79, 1323 (2004) ADSGoogle Scholar
  14. 14.
    N. Konjevic, A. Lesage, J.R. Fuhr, W.L. Wiese, J. Phys. Chem. Ref. Data 31, 819 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    N. Konjevic, W.L. Wiese, J. Phys. Chem. Ref. Data 19, 1307 (1990) ADSCrossRefGoogle Scholar
  16. 16.
    Yu. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (ver. 4.0.0). National Institute of Standards and Technology, Gaithersburg, MD (2010) Google Scholar
  17. 17.
    R.L. Kurucz, B. Bell, Atomic Line Data, Kurucz CD-ROM No. 23. Smithsonian Astrophysical Observatory, Cambridge (1995) Google Scholar
  18. 18.
    A.M. Malvezzi, N. Bloembergen, C.Y. Huang, Phys. Rev. Lett. 57, 146 (1986) ADSCrossRefGoogle Scholar
  19. 19.
    N.M. Bulgakova, A. Bulgakov, O.L. Bobrenok, Phys. Rev. E 62, 5624 (2000) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Institute of Fundamental Technological ResearchWarsawPoland

Personalised recommendations