Advertisement

Applied Physics A

, Volume 104, Issue 4, pp 1181–1187 | Cite as

Effect of humidity on the a.c. impedance of CH3NH3SnCl3 hybrid films

  • R. MoscaEmail author
  • P. Ferro
  • T. Besagni
  • D. Calestani
  • F. Chiarella
  • F. Licci
Article

Abstract

Impedance spectroscopy measurements show that complex conductivity of thermally ablated CH3NH3SnCl3 films is strongly enhanced when humidity increases. Coplanar two-electrode test devices are modeled through an equivalent circuit comprising one resistance and two constant phase elements. It is shown that the influence of ambient humidity is mainly resistive. The dynamic responses of the devices to humidification/dehumidification cycles point out that the a.c. current varies by more than three orders of magnitude when humidity is varied between dry air and 80% relative humidity. The rise times are few hundred seconds while fall times are as short as few tens of seconds. This observation suggests that impedance variations are determined by mechanisms involving loosely bound water molecules physisorbed at the surface of the hybrid film. The results obtained are discussed in terms of protonic conduction.

Keywords

Relative Humidity Constant Phase Element Hybrid Film Humidity Sensor Fall Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. Mitzi, in Functional Hybrid Materials, ed. by P. Gomez-Romero, C. Sanchez (Wiley-VCH, Weinheim, 2004), p. 347 Google Scholar
  2. 2.
    D.B. Mitzi, J. Chem. Soc., Dalton Trans. 2001, 1 (2001) CrossRefGoogle Scholar
  3. 3.
    K. Yamada, T. Matsui, T. Tsuritani, T. Okuda, S. Ichiba, Z. Naturforsch. A 45, 307 (1990) Google Scholar
  4. 4.
    D.B. Mitzi, C.A. Field, Z. Schlesinger, R.B. Laibowit, J. Solid State Chem. 114, 159 (1995) ADSCrossRefGoogle Scholar
  5. 5.
    T. Matsushima, K. Fujita, T. Tsutsui, Jpn. J. Appl. Phys. 45, 523 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    N. Onoda Yamamuro, T. Matsuo, H. Suga, J. Chem. Thermodyn. 23, 987 (1991) CrossRefGoogle Scholar
  7. 7.
    K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, T. Okuda, Y. Furukawa, Bull. Chem. Soc. Jpn. 71, 127 (1998) CrossRefGoogle Scholar
  8. 8.
    I. Borriello, G. Cantele, D. Ninno, Phys. Rev. B 77, 235214 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Mitzi, Prog. Inorg. Chem. 48, 1 (1999) CrossRefGoogle Scholar
  10. 10.
    K. Yamada, H. Kawaguchi, T. Matsui, Bull. Chem. Soc. Jpn. 63, 2521 (1990) CrossRefGoogle Scholar
  11. 11.
    F. Chiarella, P. Ferro, F. Licci, M. Barra, M. Biasucci, A. Cassinese, R. Vaglio, Appl. Phys. A 86, 89 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, R. Vaglio, Phys. Rev. B 77, 45129 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    D.B. Mitzi, Chem. Mater. 13, 3283 (2001) CrossRefGoogle Scholar
  14. 14.
    C. Aruta, F. Licci, A. Zappettini, F. Bolzoni, F. Rastelli, P. Ferro, T. Besagni, Appl. Phys. A 81, 963 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    P.M. Faia, C.S. Furtado, A.J. Ferreira, Sens. Actuators B 107, 353 (2005) CrossRefGoogle Scholar
  16. 16.
    J. Wang, Q. Lin, R. Zhou, B. Xu, Sens. Actuators B 81, 248 (2002) CrossRefGoogle Scholar
  17. 17.
    E. Quartarone, P. Mustarelli, A. Magistris, M.V. Russo, I. Fratoddi, A. Furlani, Solid State Ion. 136–137, 667 (2000) CrossRefGoogle Scholar
  18. 18.
    A.K. Jonscher, Phys. Status Solidi A 32, 665 (1975) ADSCrossRefGoogle Scholar
  19. 19.
    J.R. Macdonald, Solid State Ion. 13, 147 (1984) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    M.R. Shoar Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, Solid State Ion. 180, 922 (2009) CrossRefGoogle Scholar
  21. 21.
    J.R. Macdonald, D.R. Franceschetti, in Impedance Spectroscopy, ed. by J.R. Macdonald (Wiley, New York, 1987), p. 84 Google Scholar
  22. 22.
    G. Lang, G. Inzelt, Electrochim. Acta 36, 847 (1991) CrossRefGoogle Scholar
  23. 23.
    I. Rubinstein, J. Rishpon, S. Gottesfeld, J. Electrochem. Soc. 133, 729 (1986) CrossRefGoogle Scholar
  24. 24.
    J.F. McCann, S.P.S. Badwal, J. Electrochem. Soc. 129, 551 (1982) CrossRefGoogle Scholar
  25. 25.
    P.M. Faia, C.S. Furtado, A.J. Ferreira, Sens. Actuators B 101, 183 (2004) CrossRefGoogle Scholar
  26. 26.
    K.P. Biju, M.K. Jain, Thin Solid Films 516, 2175 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    N. Yamazoe, Y. Shimizu, Sens. Actuat. 10, 379 (1986) Google Scholar
  28. 28.
    J.H. Anderson, G.A. Parks, J. Phys. Chem. 72, 3362 (1968) CrossRefGoogle Scholar
  29. 29.
    Y.C. Yeh, T.Y. Tseng, J. Mater. Sci. 24, 2739 (1989) ADSCrossRefGoogle Scholar
  30. 30.
    T. Norby, Solid State Ion. 125, 1 (1999) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. Mosca
    • 1
    Email author
  • P. Ferro
    • 1
  • T. Besagni
    • 1
  • D. Calestani
    • 1
  • F. Chiarella
    • 1
    • 2
  • F. Licci
    • 1
  1. 1.IMEM-CNRFontanini-ParmaItaly
  2. 2.CNR-INFM CoherentiaNapoliItaly

Personalised recommendations