Applied Physics A

, 104:1159

Calculated optical properties of GaX (X=P, As, Sb) under hydrostatic pressure

Article

Abstract

The hydrostatic pressure dependence of the principal energy gaps and of the optical properties of GaX (X = P, As and Sb) has been calculated using the full potential-linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) for the exchange and correlation potential is applied. Also, we have used the Engel–Vosko GGA formalism, which optimizes the corresponding potential for band-structure and the optical properties calculations. Structural properties such as equilibrium lattice constants, the bulk modulus, and its pressure derivatives were calculated for GaP, GaAs, and GaSb in the zinc-blende structure (ZB). We have found that the results of the structural properties calculations are in agreement with those of ab initio and experimental data. In general, the pressure dependence of the principal energy gaps is compared to other values. The same is for the pressure coefficient. However, for the same structure, the comparison of our results with those of experimental and theoretical calculations shows good agreement. On the other hand, the effect of the applied pressure is clearly seen in the optical properties especially near the energy transition regions.

References

  1. 1.
    M.D. Frogley, J.L. Sly, D.J. Dunstan, Phys. Rev. B 58, 12579 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    D. Boulanger, R. Parrot, Phys. Rev. B 66, 205201 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    T. Hattori, K. Tsuji, Y. Miyata, T. Sugahara, F. Shimojo, Phys. Rev. B 76, 144206 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    J. Serrano, A. Rubio, E. Hernández, A. Muñoz, A. Mujica, Phys. Rev. B 62, 16612 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    S.B. Zhang, M.L. Cohen, Phys. Rev. B 35, 7604 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    T. Soma, H.M. Kagaya, Solid State Commun. 50, 1011 (1984) ADSCrossRefMATHGoogle Scholar
  7. 7.
    J.R. Chelikowsky, Phys. Rev. B 35, 1174 (1987) ADSCrossRefGoogle Scholar
  8. 8.
    Y.K. Vohra, S.T. Weir, A. Ruoff, Phys. Rev. B 31, 7344 (1985) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Al-Douri, H. Aourag, Physica B 324, 173 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Al-Douri, S. Mecabih, N. Benosman, H. Aourag, Physica B 325, 362 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    M. Rabah, Y. Al-Douri, M. Sehil, D. Rached, Mater. Chem. Phys. 80, 34 (2003) CrossRefGoogle Scholar
  12. 12.
    A.H. Reshak, Eur. Phys. J. B 47, 503 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    S. Froyen, M.R. Cohen, Phys. Rev. B 28, 3258 (1983) ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993) ADSCrossRefGoogle Scholar
  16. 16.
    N. Bouarissa, H. Baaziz, Z. Charifi, Phys. Status Solidi (b). Basic Solid State Phys. 231, 403 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    M.L. Cohen, T.K. Bergstresser, Phys. Rev. 141, 789 (1966) ADSCrossRefGoogle Scholar
  18. 18.
    M. Briki, M. Abdelouahab, A. Zaoui, M. Ferhat, Superlattices Microstruct. 45, 80 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, Ali H. Reshak, Y. Al-Douri, Comput. Mater. Sci. 45, 474 (2009) CrossRefGoogle Scholar
  20. 20.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1947) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    J.R. Macdonald, D.R. Powell, J. Res. Natl. Bur. Stand., A Phys. Chem. 75, 441 (1971) Google Scholar
  22. 22.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K. Techn. Universitat, Wien, Austria (2001). ISBN 3-9501031-1-1-2 Google Scholar
  23. 23.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, 864 (1964) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    S. Berrah, H. Abid, A. Boukortt, M. Sehil, Turk. J. Phys. 30, 513 (2006) Google Scholar
  26. 26.
    Y. Al-Douri, H. Abid, H. Aourag, Mater. Chem. Phys. 87, 14 (2004) CrossRefGoogle Scholar
  27. 27.
    M. Levinshtein, S. Rumyantsev, M. Shur (eds.), Handbook Series on Semiconductor Parameters, Vol. 1 (World Scientific, Singapore, 1996) Google Scholar
  28. 28.
    D.E. Aspnes, C.G. Olson, D.W. Lynch, Phys. Rev. Lett. 37, 766 (1976) ADSCrossRefGoogle Scholar
  29. 29.
    S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, M. Cardona, Phys. Rev. B 43, 4349 (1991) ADSCrossRefGoogle Scholar
  30. 30.
    C. Alibert, A. Joullie, A.M. Joullie, C. Ance, Phys. Rev. B 27, 4946 (1983) ADSCrossRefGoogle Scholar
  31. 31.
    T.S. Moss, Handbook on Semiconductors, vol. 2 (North-Holland, Amsterdam, 1980) Google Scholar
  32. 32.
    M.D. Frogley, J.L. Sly, D.J. Dunstan, Phys. Rev. B 58, 12579 (1998) ADSCrossRefGoogle Scholar
  33. 33.
    Y. Al-Douri, H. Abid, A. Zaoui, H. Aourag, Physica B 301, 295 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    J.C. Phillips, Bonds and Bands in Semiconductors (Academic Press, San Diego, 1973) Google Scholar
  35. 35.
    A. Garcia, M.L. Cohen, Phys. Rev. B 47, 4215 (1993) ADSCrossRefGoogle Scholar
  36. 36.
    N.E. Christensen, S. Stapathy, Z. Pawlowska, Phys. Rev. B 36, 1032 (1987) ADSCrossRefGoogle Scholar
  37. 37.
    A. Onton, J. Lumin. 7, 95 (1973) CrossRefGoogle Scholar
  38. 38.
    A. Gheorfhiu, M.-L. Theye, J. Non-Cryst. Solids 35 & 36, 397 (1980) CrossRefGoogle Scholar
  39. 39.
    L. Wanga, X. Chena, W. Lua, Y. Huanga, J. Zhaob, Solid State Commun. 149, 638 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    M. Linnik, A. Christou, Physica B 318, 140 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    H. Tributsch, Z. Naturforsch. A, J. Phys. Sci. 32, 972 (1977) ADSGoogle Scholar
  42. 42.
    D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983) ADSCrossRefGoogle Scholar
  43. 43.
    H.R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963) ADSCrossRefGoogle Scholar
  44. 44.
    S.S. Vishnubhatla, J.C. Woolley, Can. J. Phys. 46, 1769 (1968) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Nano Electronic EngineeringUniversity Malaysia PerlisKangarMalaysia
  2. 2.Institute of Physical BiologySouth Bohemia UniversityNove HradyCzech Republic
  3. 3.School of Materials EngineeringUniversity Malaysia Perlis (UniMAP)KangarMalaysia

Personalised recommendations