Applied Physics A

, Volume 104, Issue 1, pp 77–82 | Cite as

Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran

  • Andreas Schwenke
  • Philipp Wagener
  • Stefan Nolte
  • Stephan Barcikowski
Open Access
Article

Abstract

The influence of fundamental and second harmonic wavelength on ablation efficiency and nanoparticle properties is studied during picosecond laser ablation of silver, zinc, and magnesium in polymer-doped tetrahydrofuran. Laser ablation in stationary liquid involves simultaneously the fabrication of nanoparticles by ablation of the target material and fragmentation of dispersed nanoparticles by post irradiation. The ratio in which the laser pulse energy contributes to these processes depends on laser wavelength and colloidal properties. For plasmon absorbers (silver), using the second harmonic wavelength leads to a decrease of the nanoparticle productivity over process time along with exponential decrease in particle diameter, while using the fundamental wavelength results in a constant ablation rate and linear decrease in particle diameter. For colloids made of materials without plasmon absorption (zinc, magnesium), laser scattering is the colloidal property that limits nanoparticle productivity by Mie-scattering of dispersed nanoparticle clusters.

References

  1. 1.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. 801 (1994) Google Scholar
  2. 2.
    Y. Sun, B. Whiley, Z.Y. Li, Y. Xia, J. Am. Chem. Soc. 126, 9399 (2004) CrossRefGoogle Scholar
  3. 3.
    R.N. Grass, W.J. Stark, J. Mater. Chem. 16, 1825 (2006) CrossRefGoogle Scholar
  4. 4.
    T. Tsuji, T. Hamagami, T. Kawamura, J. Yamaki, M. Tsuji, Appl. Surf. Sci. 243, 214 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev. 107, 2228 (2007) CrossRefGoogle Scholar
  6. 6.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805–3821 (2009) CrossRefGoogle Scholar
  7. 7.
    S. Barcikowski, F. Devesa, K. Moldenhauer, J. Nanopart. Res. 11, 1883–1893 (2009) CrossRefGoogle Scholar
  8. 8.
    M. Procházka, P. Mojzeš, J. Štepánek, B. Vlèková, P.-Y. Turpin, Anal. Chem. 69, 5103 (1997) CrossRefGoogle Scholar
  9. 9.
    F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 8333 (2000) CrossRefGoogle Scholar
  10. 10.
    A.V. Kabashin, M. Meunier, J. Appl. Phys. 94, 7941 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Simakin, V.V. Voronov, N.A. Kirichenko, G.A. Shafeev, Appl. Phys. A, Mater. Sci. Process. 79, 1127 (2004) ADSGoogle Scholar
  12. 12.
    N. Bärsch, A. Gatti, R. Sattari, S. Barcikowski, J. Laser Micro Nanoeng. 4, 66 (2009) CrossRefGoogle Scholar
  13. 13.
    H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, J. Phys. Chem. B 109, 18260 (2005) CrossRefGoogle Scholar
  14. 14.
    S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier, J. Phys. Chem. C 113, 9526 (2009) CrossRefGoogle Scholar
  15. 15.
    T. Tsuji, D.-H. Thang, Y. Okazaki, M. Nakanishi, Y. Tsuboi, M. Tsuji, Appl. Surf. Sci. 254, 5224 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    P. Wagener, G. Brandes, A. Schwenke, S. Barcikowski, Phys. Chem. Chem. Phys. 13, 5120 (2011) CrossRefGoogle Scholar
  17. 17.
    S. Barcikowski, A. Menéndez-Manjón, B.N. Chichkov, M. Brikas, G. Raèiukaitis, Appl. Phys. Lett. 91, 083113 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    S. Besner, A.V. Kabashin, M. Meunier, Appl. Phys. Lett. 89, 233122 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997) ADSCrossRefGoogle Scholar
  20. 20.
    R. Kelly, A. Miotello, Appl. Surf. Sci. 205, 96 (1996) Google Scholar
  21. 21.
    C. Momma, B.N. Chichkov, S. Nolte, F. Von Alvensleben, A. Tünnermann, H. Welling, B. Wellegehausen, Opt. Commun. 129, 134 (1996) ADSCrossRefGoogle Scholar
  22. 22.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225501 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    K. Patahk, A. Povitsky, J. Appl. Phys. 104, 113108 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, A. Tünnermann, Opt. Express 16, 8958 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, Nanotechnology 20, 44 (2009) CrossRefGoogle Scholar
  26. 26.
    T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Appl. Surf. Sci. 202, 80 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    P. Šmejkal, J. Pfleger, B. Vlčková, O. Dammer, J. Phys. Conf. Ser. 59, 185 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100, 114912 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 105, 5114 (2001) CrossRefGoogle Scholar
  30. 30.
    P. Wagener, S. Faramarzi, A. Schwenke, R. Rosenfeld, S. Barcikowski, Appl. Surf. Sci. 257, 7231 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    P. Wagener, A. Schwenke, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 7618 (2010) CrossRefGoogle Scholar
  32. 32.
    T.X. Phuoc, B.H. Howard, D.V. Martello, Y. Soong, M.K. Chyu, Opt. Lasers Eng. 46, 829 (2008) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Andreas Schwenke
    • 1
  • Philipp Wagener
    • 1
  • Stefan Nolte
    • 2
  • Stephan Barcikowski
    • 1
    • 3
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany
  2. 2.Institute of Applied PhysicsFriedrich-Schiller-University JenaJenaGermany
  3. 3.Technical Chemistry IUniversity of Duisburg-EssenEssenGermany

Personalised recommendations