Applied Physics A

, Volume 103, Issue 4, pp 933–938 | Cite as

Geometry-controlled adhesion: revisiting the contact splitting hypothesis

Invited paper

Abstract

Following studies of biological attachment systems, the principle of contact splitting, according to which splitting up the contact into finer subcontacts increases adhesion, was introduced. However, numerous attempts at employing this principle in producing dry adhesives were unsuccessful, prompting us to test its validity. Here, we show that in addition to the increase in number of subcontacts, the contact splitting model also implies a built-in increase in contact area. Thus, based on this model, it is impossible to say which parameter leads to increase in adhesion, the increasing number of subcontacts, as accepted to think, or just an increase in contact area, which is a trivial result. To clarify this point, we show experimentally what happens if we keep the contact area constant, while increasing the number of subcontacts in the “equal load sharing” mode, which was never done before. In contrast to the contact splitting principle, our measurements clearly demonstrate that, in flat-punch-patterned conformal contact, the pull-off force remains the same even when the number of subcontacts increases by two orders of magnitude. Our finding suggests that the contact splitting idea can only work in thin-film-based contacts, which are indeed employed in most biological temporary attachment systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Scherge, S.N. Gorb, Biological Micro- and Nanotribology: Nature’s Solutions (Springer, Berlin, 2001) Google Scholar
  2. 2.
    N.E. Stork, J. Exp. Biol. 88, 91 (1980) Google Scholar
  3. 3.
    K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Nature 405, 681 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Proc. Natl. Acad. Sci. USA 99, 12252 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S.N. Gorb, E. Arzt, Proc. Natl. Acad. Sci. USA 102, 16293 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    E. Arzt, S. Gorb, R. Spolenak, Proc. Natl. Acad. Sci. USA 100, 10603 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    E. Arzt, Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 26, 1245 (2006) CrossRefGoogle Scholar
  8. 8.
    E.P. Chan, C. Greiner, E. Arzt, A.J. Crosby, Mater. Res. Soc. Bull. 32, 496 (2007) CrossRefGoogle Scholar
  9. 9.
    E. Kroner, E. Arzt, Vak. Forsch. Prax. 21, A14 (2009) CrossRefGoogle Scholar
  10. 10.
    M. Sitti, R.S. Fearing, J. Adhes. Sci. Technol. 17, 1055 (2003) CrossRefGoogle Scholar
  11. 11.
    N.J. Glassmaker, A. Jagota, C.-Y. Hui, J. Kim, J. R. Soc. Interface 1, 23 (2004) CrossRefGoogle Scholar
  12. 12.
    C.-Y. Hui, N.J. Glassmaker, T. Tang, A. Jagota, J. R. Soc. Interface 1, 35 (2004) CrossRefGoogle Scholar
  13. 13.
    A. Peressadko, S.N. Gorb, J. Adhes. 80, 247 (2004) CrossRefGoogle Scholar
  14. 14.
    B. Aksak, M.P. Murphy, M. Sitti, Langmuir 23, 3322 (2007) CrossRefGoogle Scholar
  15. 15.
    C. Greiner, A. del Campo, E. Arzt, Langmuir 23, 3495 (2007) CrossRefGoogle Scholar
  16. 16.
    A. del Campo, C. Greiner, E. Arzt, Langmuir 23, 10235 (2007) CrossRefGoogle Scholar
  17. 17.
    S. Kim, M. Sitti, Appl. Phys. Lett. 89, 261911 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    N.J. Glassmaker, A. Jagota, C.-Y. Hui, W.L. Noderer, M.K. Chaudhury, Proc. Natl. Acad. Sci. USA 104, 10786 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, J. R. Soc. Interface 4, 271 (2007) CrossRefGoogle Scholar
  20. 20.
    L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Science 322, 238 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    M.P. Murphy, B. Aksak, M. Sitti, Small 5, 170 (2009) CrossRefGoogle Scholar
  22. 22.
    C. Greiner, E. Arzt, A. del Campo, Adv. Mater. 21, 479 (2009) CrossRefGoogle Scholar
  23. 23.
    K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 324, 301 (1971) ADSCrossRefGoogle Scholar
  24. 24.
    W.J.P. Barnes, Mater. Res. Soc. Bull. 32, 479 (2007) CrossRefGoogle Scholar
  25. 25.
    M. Varenberg, A. Peressadko, S. Gorb, E. Arzt, S. Mrotzek, Rev. Sci. Instrum. 77, 066105 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    M. Varenberg, A. Peressadko, S. Gorb, E. Arzt, Appl. Phys. Lett. 89, 121905 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, Nat. Mater. 2, 461 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    M. Varenberg, S. Gorb, Adv. Mater. 21, 483 (2009) CrossRefGoogle Scholar
  29. 29.
    M. Varenberg, N.M. Pugno, S.N. Gorb, Soft Matter 6, 3269 (2010) CrossRefADSGoogle Scholar
  30. 30.
    K. Kendall, J. Phys. D, Appl. Phys. 8, 1449 (1975) ADSCrossRefGoogle Scholar
  31. 31.
    W.R. Hansen, K. Autumn, Proc. Natl. Acad. Sci. USA 102, 385 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnion-IITHaifaIsrael
  2. 2.Department of Functional Morphology and BiomechanicsZoological Institute of the University of KielKielGermany

Personalised recommendations