Applied Physics A

, Volume 103, Issue 2, pp 267–270

Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation

Rapid communication

Abstract

We present a novel method to fabricate hole arrays by forming a four-beam interference pattern with two gratings. In this method a femtosecond laser beam is split into four and collected to interfere using two cascaded diffractive gratings. One benefit of this grating pair is that it is achromatic, because of the geometry of the grating pair, and therefore it is suitable for femtosecond ablation. Grating pairs were designed and fabricated for a standard Ti:sapphire femtosecond laser, with 800-nm central wavelength, so that the interference pattern generates holes with less than 1-μm diameter. Holes with this size diffract with a colorful visual appearance in the visible wavelength range and therefore these structures are suitable for security, authentication and decorative marking. We show that this method is suitable for fast ablation of hole arrays in both silicon and steel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.R. Hershey, E.N. Leith, Appl. Opt. 29, 937 (1990) CrossRefADSGoogle Scholar
  2. 2.
    M. Wei, D.T. Attwood, T.K. Gustafson, E.H. Anderson, J. Vac. Sci. Technol. B 12, 3648 (1994) CrossRefGoogle Scholar
  3. 3.
    H.H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S.O. Kim, P.F. Nealey, Microelectron. Eng. 67–68, 56 (2003) CrossRefGoogle Scholar
  4. 4.
    J.-H. Klein-Wiele, J. Bekesi, P. Simon, Appl. Phys. A 79, 775 (2004) CrossRefADSGoogle Scholar
  5. 5.
    J. Bekesi, J.-H. Klein-Wiele, P. Simon, Appl. Phys. A 76, 355 (2003) CrossRefADSGoogle Scholar
  6. 6.
    K. Paivasaari, J.J.J. Kaakkunen, M. Kuittinen, T. Jaaskelainen, Opt. Express 15, 13838 (2007) CrossRefADSGoogle Scholar
  7. 7.
    K. Paivasaari, V.K. Tikhomirov, J. Turunen, Opt. Express 15, 2336 (2007) CrossRefADSGoogle Scholar
  8. 8.
    N.H. Rizvi, RIKEN Rev. 50, 107 (2003) Google Scholar
  9. 9.
    P. Simon, J. Ihlemann, Appl. Phys. A 63, 505 (1996) CrossRefADSGoogle Scholar
  10. 10.
    H.H. Solak, C. David, J. Gobrecht, L. Wang, F. Cerrina, Microelectron. Eng. 61–62, 77 (2002) CrossRefGoogle Scholar
  11. 11.
    H.H. Solak, C. David, J. Gobrecht, L. Wang, F. Cerrina, J. Vac. Sci. Technol. B 20, 2844 (2002) CrossRefGoogle Scholar
  12. 12.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007) CrossRefADSGoogle Scholar
  13. 13.
    A.A. Maznev, T.F. Crimmins, K.A. Nelson, Opt. Lett. 23, 1378 (1998) CrossRefADSGoogle Scholar
  14. 14.
    Y. Nakata, T. Okada, M. Maeda, Appl. Phys. A 79, 1481 (2004) ADSGoogle Scholar
  15. 15.
    J.-H. Klein-Wiele, P. Simon, Appl. Phys. Lett. 83, 4707 (2003) CrossRefADSGoogle Scholar
  16. 16.
    J. Bekesi, J. Meinertz, J. Ihlemann, P. Simon, Appl. Phys. A 93, 27 (2008) CrossRefADSGoogle Scholar
  17. 17.
    C.N. Andersson, P.P. Naulleau, Appl. Opt. 47, 1327 (2008) CrossRefADSGoogle Scholar
  18. 18.
    J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie, Berlin, 1997) Google Scholar
  19. 19.
    Y.-S. Cheng, Appl. Opt. 23, 3057 (1984) CrossRefADSGoogle Scholar
  20. 20.
    P. Rai-Choudhury, Microlithography. Handbook of Microlithography, Micromachining, and Microfabrication, vol. 1 (SPIE, Bellingham, 1997) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. J. J. Kaakkunen
    • 1
  • K. Paivasaari
    • 1
  • P. Vahimaa
    • 1
  1. 1.Department of Physics and MathematicsUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations