Applied Physics A

, Volume 103, Issue 2, pp 367–372 | Cite as

SAR reduction in a muscle cube with metamaterial attachment

Article

Abstract

The aim of this paper is to evaluate the specific absorption rate (SAR) reduction in a muscle cube by using metamaterial. To evaluate the SAR in a realistic anatomically based model of the muscle cube, the finite-difference time-domain (FDTD) method has been utilized. The effective medium parameter is obtained to be negative at 900 MHz and 1800 MHz band by designing structural parameter of split ring resonators. The reduction is about 44.73% for 900 MHz, and about 48.27% for 1800 MHz was observed in this paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Non-Ionizing Radiation Committee of the International Radiation Protection Association, Guidelines on limits on exposure to radio frequency electromagnetic fields in the frequency range from 100 KHz to 300 GHz. Health Physics 54(1), 115–123 (1988) Google Scholar
  2. 2.
    M.T. Islam, M.R.I. Faruque, N. Misran, Design analysis of ferrite sheet attachment for SAR reduction in human head. Prog. Electromagn. Res. 98, 191–205 (2009) CrossRefGoogle Scholar
  3. 3.
    S.I. Kwak, D.U. Sim, J.H. Kwon, H.D. Choi, Experimental tests of SAR reduction on mobile using EBG structures. Electron. Lett. 44(9), 568–570 (2008) CrossRefGoogle Scholar
  4. 4.
    J.N. Hawang, F.-C. Chen, Reduction of the peak SAR in the human head with metamaterials. IEEE Trans. Antennas Propag. 54(12), 3763–3770 (2006) CrossRefADSGoogle Scholar
  5. 5.
    J. Wang, O. Fujiwara, FDTD computation of temperature rise in the human head for portable telephones. IEEE Trans. Microw. Theory Tech. 47(8), 1528–1534 (1999) CrossRefADSGoogle Scholar
  6. 6.
    M.M. Sigalalas, C.T. Chan, K.M. Ho, Soukoulis, Metallic photonic band gap materials. Phys. Rev. B 52(16), 11744–11760 (2001) CrossRefADSGoogle Scholar
  7. 7.
    D.R. Smith, N. Kroll, Negative refractive index in left handed materials. Phys. Rev. Lett. 85-14, 2933–2936 (2000) CrossRefADSGoogle Scholar
  8. 8.
    M.B. Manapati, R.S. Kshetrimayum, SAR reduction in human head from mobile phone radiation using single negative metamaterials. J. Electromagn. Waves Appl. 23, 1385–1395 (2009) CrossRefGoogle Scholar
  9. 9.
    B.B. Beard, W. Kainz, T. Onishi, T. Iyama, S. Watanabe, O. Fujiwara, J. Wang, G. Bit-Babik, A. Faraone, J. Wiart, A. Christ, N. Kuster, A. Lee, H. Kroeze, M. Siegbahn, J. Keshvari, H. Abrishamkar, W. Simon, D. Manteuffel, N. Nikoloski, Comparisons of computed mobile phone induced SAR in the SAM phantom to that anatomically corrects model of the human head. IEEE Trans. Electromagn. Compat. 48(2), 397–407 (2006) CrossRefGoogle Scholar
  10. 10.
    J.B. Pendry, J.A. Holen, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999) CrossRefADSGoogle Scholar
  11. 11.
    N. Engheta, R.W. Ziolkowski, A positive future for double-negative metamaterials. IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005) CrossRefADSGoogle Scholar
  12. 12.
    D. Correia, J.M. Jin, 3-D-FDTD-PML analysis of left-handed metamaterials. Microw. Opt. Technol. Lett. 40(3), 201–205 (2004) CrossRefGoogle Scholar
  13. 13.
    R.W. Ziolkowski, Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag. 51(7), 1516–1529 (2003) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    A. Erentok, P.L. Luljak, R.W. Ziolkowski, Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications. IEEE Trans. Antennas Propag. 53, 160–172 (2005) CrossRefADSGoogle Scholar
  15. 15.
    D. Sievenpiper, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999) CrossRefADSGoogle Scholar
  16. 16.
    M.T. Islam, M.R.I. Faruque, N. Misran, Reduction of specific absorption rate (SAR) in the human head with ferrite material and metamaterial. Prog. Electromagn. Res. 9, 47–58 (2009) CrossRefGoogle Scholar
  17. 17.
    M.R.I. Faruque, M.T. Islam, N. Misran, Evaluation of specific absorption rate (SAR) reduction for PIFA antenna using metamaterials. Freq. J. 64(7/8), 144–149 (2010) CrossRefGoogle Scholar
  18. 18.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000) CrossRefADSGoogle Scholar
  19. 19.
    M. Bayindir, K. Aydin, E. Ozbay, Transmission properties of composite metamaterials in free space. Appl. Phys. Lett. 81(1), 120–122 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Space Science (ANGKASA)BangiMalaysia
  2. 2.Department of Electrical, Electronic and Systems EngineeringUniversiti Kebangsaan Malaysia, UKMBangiMalaysia

Personalised recommendations