Applied Physics A

, Volume 103, Issue 3, pp 899–904 | Cite as

Multipole approach in electrodynamics of metamaterials

  • A. Chipouline
  • J. Petschulat
  • A. Tuennermann
  • T. Pertsch
  • C. Menzel
  • C. Rockstuhl
  • F. Lederer
Article

Abstract

Metamaterials are artificial media that allow tailoring the macroscopic properties of light propagation by a careful choice of nanoplasmonic inclusions it is made of. A simple and versatile analytical model describing propagation of electro magnetic waves in metamaterials is suggested. The model is based on the secondary averaging procedure in full analogy with the ordinary one accepted for Maxwell equations, where the nanoplasmonic inclusions (typically referred to as metaatoms or metamolecules) are considered similarly to natural atoms or molecules. The model turns out to be beneficial improvement in the theoretical description of metamaterials since it contributes to the physical understanding of optical phenomena in metamaterials and provides good quantitative correspondence with the results of rigorous numerical methods, and is able to predict new effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-K. Yuan, W. Cai, S. Xiao, V. Drachev, V. Shalaev, Opt. Lett. 32, 1671 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    G. Dolling, M. Wegener, C. Soukoulis, Opt. Lett. 32, 53 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    J. Valentine, S. Zhang, T. Zentgraf, G.B.E. Ulin-Avila, D.A. Genov, X. Zhang, Nature 455, 376 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, Nat. Mater. 8, 568 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    A. Al_u, N. Engheta, Phys. Rev. Lett. 102, 1 (2009) Google Scholar
  6. 6.
    Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, C.T. Chan, Phys. Rev. Lett. 102, 1 (2009) Google Scholar
  7. 7.
    M. Farhat, S. Guenneau, S. Enoch, Phys. Rev. Lett. 103, 1 (2009) CrossRefGoogle Scholar
  8. 8.
    B. Justice, S. Cummer, J. Pendry, A. Starr, Science 314, 977 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    U. Leonhardt, Science 312, 1777 (2006) MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    E.E. Narimanov, A.V. Kildishev, Appl. Phys. Lett. 95, 041106 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    S.M. Vukovic, I.V. Shadrivov, Y.S. Kivshar, Appl. Phys. Lett. 95, 041902 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    D.Ö. Göuney, D.A. Meyer, Phys. Rev. A 79, 1 (2009) Google Scholar
  13. 13.
    N. Papasimakis, V. Fedotov, N. Zheludev, Phys. Rev. Lett. 101, 253903 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    N. Liu, L. Langguth, J.K.T. Weiss, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E.B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, T. Pertsch, Opt. Lett. 34, 704 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    C. Garcia-Meca, R. Ortuno, F.J. Rodriguez-Fortuno, J. Marti, A. Martinez, Opt. Lett. 34, 1603 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    M. Thiel, G. von Freymann, S. Linden, M. Wegener, Opt. Lett. 34, 19 (2009) CrossRefGoogle Scholar
  18. 18.
    B. Bai, Y. Svirko, J. Turunen, T. Vallius, Phys. Rev. A 76, 023811 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    L. Arnaut, J. Electromagn. Waves Appl. 11, 1459 (1997) CrossRefGoogle Scholar
  20. 20.
    J.A. Reyes, A. Lakhtakia, Opt. Commun. 266, 565 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    S. Prosvirnin, N. Zheludev, J. Opt. A, Pure Appl. Opt. 11, 074002 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003) CrossRefGoogle Scholar
  23. 23.
    V. Fedotov, P. Mladyonov, S. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    V. Fedotov, A. Schwanecke, N. Zheludev, Nano Lett. 7, 1997 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    S.V. Zhukovsky, A.V. Novitsky, V.M. Galynsky, Opt. Lett. 34, 1988 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    J. Pendry, Science 306, 1353 (2004) ADSCrossRefGoogle Scholar
  27. 27.
    S. Tretyakov, A. Sihvola, L. Jylhä, Photonics Nanostruct. Fundam. Appl. 3, 107 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Phys. Rev. B 79, 1 (2009) Google Scholar
  29. 29.
    P. Mazur, B.R.A. Nijboer, Physica XIX, 971–986 (1953) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tüunnermann, F. Lederer, T. Pertsch, Phys. Rev. A 78, 043811 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, F. Lederer, Phys. Rev. A 80, 063828 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, T. Pertsch, Opt. Express 18(14), 14454–14466 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Chipouline
    • 1
  • J. Petschulat
    • 1
  • A. Tuennermann
    • 1
  • T. Pertsch
    • 1
  • C. Menzel
    • 2
  • C. Rockstuhl
    • 2
  • F. Lederer
    • 2
  1. 1.Institute of Applied PhysicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institute of Condensed Matter Theory and Solid State OpticsFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations