Advertisement

Applied Physics A

, Volume 103, Issue 3, pp 689–692 | Cite as

Tunable THz metamaterials based on an array of paraelectric SrTiO3 rods

  • R. Yahiaoui
  • H. Němec
  • P. Kužel
  • F. Kadlec
  • C. Kadlec
  • P. Mounaix
Article

Abstract

This work presents theoretical and experimental investigations of a tunable metamaterial which exhibits negative permeability in the THz frequency range. The tunability is obtained by temperature changes, and the sample consists of an array of high-permittivity SrTiO3 (STO) rods micromachined by a femtosecond laser. Structures exhibiting a negative permeability on multiple frequency bands are also investigated and a proper choice of the dimensions of the pattern allows us to achieve a substantial broadening of the frequency band with negative μ.

Keywords

Femtosecond Laser Effective Permeability Split Ring Resonator Negative Permeability Ative Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    K.C. Huang, M.L. Povinelli, J.D. Joannopoulos, Negative effective permeability in polaritonic photonic crystals. Appl. Phys. Lett. 85, 543 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li, Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, P. Mounaix, Tunable terahertz metamaterials with negative permeability. Phys. Rev. B 79, 241108(R) (2009) ADSGoogle Scholar
  5. 5.
    R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, P. Mounaix, Broadband dielectric terahertz metamaterials with negative permeability. Opt. Lett. 34, 3541 (2009) CrossRefGoogle Scholar
  6. 6.
    H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, Metamaterial exhibiting left-handed properties over multiple frequency bands. J. Appl. Phys. 96, 5338 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Yuan, C. Bingham, T. Tyler, S. Palit, T.H. Hand, W.J. Padilla, N.M. Jokerst, S.A. Cummer, A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators. Appl. Phys. Lett. 93, 191110 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yuan, C. Bingham, T. Tyler, S. Palit, T.H. Hand, W.J. Padilla, D.R. Smith, N.M. Jokerst, S.A. Cummer, Dual-band planar electric metamaterial in the terahertz regime. Opt. Express 16, 9746 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    N. Shen, M. Kafesaki, T. Koschny, L. Zhang, E.N. Economou, C.M. Soukoulis, Broadband blue shift tunable metamaterials and dual-band switches. Phys. Rev. B 79, 161102(R) (2009) ADSGoogle Scholar
  10. 10.
    N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, W.D. Goodhue, Novel broadband terahertz negative refractive index metamaterials: analysis and experiment. Prog. Electromagn. Res. 64, 205 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratoire Ondes et Matière d’Aquitaine, UMR CNRS 5798Université Bordeaux ITalence cedexFrance
  2. 2.Institute of PhysicsAcademy of SciencesPrague 8Czech Republic

Personalised recommendations