Applied Physics A

, Volume 103, Issue 3, pp 685–688 | Cite as

Theoretical and experimental investigations of easy made fishnet metamaterials at microwave frequencies

  • Riad Yahiaoui
  • Valérie Vignéras
  • Patrick Mounaix
Article

Abstract

In this work, we demonstrate theoretically and experimentally a left handed behaviour of a planar fishnet type metamaterial in the microwave regime. The fabrication procedure based on printed circuit board technology and mechanical micromachining technique is easy, unique and doesn’t involve optical lithography. The effective parameters have been extracted using the S parameter retrieval method and show a very good agreement between simulation and experiment. Using finite-element method based simulations and W-band (75 GHz–110 GHz) experiments. We measured a negative index of refraction of −4 at 85 GHz. The demonstrated left handed materials represent a step towards the easy fabrication of metamaterials with a negative refractive index that open a new path for the active manipulation of millimetre wavelengths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.G. Veselago, Sov. Phys. Usp. 10, 509–514 (1968) ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    S. Zhang et al., Phys. Rev. Lett. 95, 137404 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    V.M. Shalaev et al., Opt. Lett. 30, 3356–3358 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Science 312, 892 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 31, 1800–1802 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    S. Zhang et al., Opt. Express 14, 6778–6787 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    K. Guven et al., J. Opt. A, Pure Appl. Opt. 9, S361–S365 (2007) CrossRefGoogle Scholar
  10. 10.
    K.B. Alici, E. Ozbay, J. Phys. D, Appl. Phys. 41, 135011 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Express 15, 11536–11541 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    N.C. Panoiu, R.M. Osgood, Opt. Express 13, 4922–4930 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    M. Kafesaki et al., Phys. Rev. B 75, 235114 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    C. Yan, Y. Cui, Q. Wang, S. Zhuo, J. Opt. Soc. Am. B 25, 1815–1819 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    R.A. Depine, A. Lakhtakia, Microw. Opt. Technol. Lett. 41, 315–316 (2004) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Riad Yahiaoui
    • 1
    • 2
  • Valérie Vignéras
    • 2
  • Patrick Mounaix
    • 1
  1. 1.Laboratoire Ondes et Matière d’AquitaineUniversité Bordeaux 1, UMR 5798Talence CedexFrance
  2. 2.Laboratoire de l’Intégration du Matériau au SystèmeUniversité Bordeaux 1, UMR 5218Pessac CedexFrance

Personalised recommendations