Applied Physics A

, Volume 103, Issue 1, pp 21–26

Unipolar resistive switching in high-resistivity Pr0.7Ca0.3MnO3 junctions

  • Song-Lin Li
  • Jie Li
  • Yu Zhang
  • Dong-Ning Zheng
  • Kazuhito Tsukagoshi
Article

Abstract

The unusual unipolar resistive switching effect in Pr0.7Ca0.3MnO3 (PCMO) is investigated, which is a conventional bipolar switching material. The PCMO thin films are prepared with a broad resistivity range by tuning the growth oxygen pressure and substrate temperature. X-ray diffraction, Auger, and Raman spectra are used to identify the oxygen content and crystallinity in the films. The evolution of junction resistivity with growth condition is studied. It is found that only the junctions with moderate resistance values have low forming voltages and exhibit reproducible unipolar switching. The switching characteristics, including current transition mode and switching-voltage distribution, resemble those observed in insulating binary oxides, indicating a similar fuse–antifuse mechanism responsible for the unusual switching behavior in PCMO. The conversion of switching mode by increasing resistivity indicates that the unipolar switching may be a universal behavior for high-resistivity oxides. The materials which allow for unipolar switching may be far more abundant than those found presently.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007) CrossRefADSGoogle Scholar
  2. 2.
    A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008) CrossRefGoogle Scholar
  3. 3.
    S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, B.H. Park, Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85(23), 5655–5657 (2004) CrossRefADSGoogle Scholar
  4. 4.
    B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98(3), 033715 (2005) CrossRefADSGoogle Scholar
  5. 5.
    R. Dong, D.S. Lee, W.F. Xiang, S.J. Oh, D.J. Seong, S.H. Heo, H.J. Choi, M.J. Kwon, S.N. Seo, M.B. Pyun, M. Hasan, H. Hwang, Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures. Appl. Phys. Lett. 90(4), 042107 (2007) CrossRefADSGoogle Scholar
  6. 6.
    K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, H. Takagi, Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices. Jpn. J. Appl. Phys. 47(8), 6266–6271 (2008) CrossRefADSGoogle Scholar
  7. 7.
    S.Q. Liu, N.J. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76(19), 2749–2751 (2000) CrossRefADSGoogle Scholar
  8. 8.
    A. Odagawa, H. Sato, I.H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, H. Adachi, Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature. Phys. Rev. B 70(22), 224403 (2004) CrossRefADSGoogle Scholar
  9. 9.
    D.S. Shang, Q. Wang, L.D. Chen, R. Dong, X.M. Li, W.Q. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. Phys. Rev. B 73(24), 245427 (2006) CrossRefADSGoogle Scholar
  10. 10.
    T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86(1), 012107 (2005) CrossRefADSGoogle Scholar
  11. 11.
    A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073–4075 (2004) CrossRefADSGoogle Scholar
  12. 12.
    D.S. Jeong, H. Schroeder, R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid-State Lett. 10(8), G51–G53 (2007) CrossRefGoogle Scholar
  13. 13.
    D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104(12), 123716 (2008) CrossRefADSGoogle Scholar
  14. 14.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nacategorychnol. 3, 429–433 (2008) CrossRefGoogle Scholar
  15. 15.
    N. Xu, L.F. Liu, X. Sun, X.Y. Liu, D.D. Han, Y. Wang, R.Q. Han, J.F. Kang, B. Yu, Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92(23), 232112 (2008) CrossRefADSGoogle Scholar
  16. 16.
    H.Y. Jeong, J.Y. Lee, S.-Y. Choi, Interface-engineered amorphous TiO2-based resistive memory devices. Adv. Funct. Mater. 20(22), 3912–3917 (2010) CrossRefGoogle Scholar
  17. 17.
    H.Y. Jeong, J.Y. Lee, S.-Y. Choi, J.W. Kim, Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95(16) (2009) Google Scholar
  18. 18.
    Y.H. Do, J.S. Kwak, J.P. Hong, K.H. Jung, H. Im, Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films. J. Appl. Phys. 104(11), 114512 (2008) CrossRefADSGoogle Scholar
  19. 19.
    Y.H. Do, J.S. Kwak, Y.C. Bae, K. Jung, H. Im, J.P. Hong, Oxygen ion drifted bipolar resistive switching behaviors in TiO2-Al electrode interfaces. Thin Solid Films 518(15), 4408–4411 (2010) CrossRefADSGoogle Scholar
  20. 20.
    S.T. Hsu, T.K. Li, N. Awaya, Resistance random access memory switching mechanism. J. Appl. Phys. 101(2), 024517 (2007) CrossRefADSGoogle Scholar
  21. 21.
    M. Fujimoto, H. Koyama, S. Kobayashi, Y. Tamai, N. Awaya, Y. Nishi, T. Suzuki, Resistivity and resistive switching properties of Pr0.7Ca0.3MnO3 thin films. Appl. Phys. Lett. 89(24), 243504 (2006) CrossRefADSGoogle Scholar
  22. 22.
    S.L. Li, J.L. Gang, J. Li, H.F. Chu, D.N. Zheng, Reproducible low-voltage resistive switching in a low-initial-resistance Pr0.7Ca0.3MnO3 junction. J. Phys. D, Appl. Phys. 41(18), 185409 (2008) CrossRefADSGoogle Scholar
  23. 23.
    S.L. Li, D.S. Shang, J.L. Gang, J. Li, D.N. Zheng, Resistive switching properties in oxygen-deficient Pr0.7Ca0.3MnO3 junctions with active Al top electrodes. J. Appl. Phys. 105(3), 033710 (2009) CrossRefADSGoogle Scholar
  24. 24.
    S.L. Li, Z.L. Liao, J. Li, J.L. Gang, D.N. Zheng, Resistive switching properties and low resistance state relaxation in Al/Pr0.7Ca0.3MnO3/Pt junctions. J. Phys. D, Appl. Phys. 42(4), 045411 (2009) CrossRefADSGoogle Scholar
  25. 25.
    Y. Tomioka, Y. Tokura, Colossal Magnetoresistive Oxides (Gordon & Breach, New York, 2000) Google Scholar
  26. 26.
    A. Tatsi, E.L. Papadopoulou, D. Lampakis, E. Liarokapis, W. Prellier, B. Mercey, Raman study of anharmonic effects in Pr0.5Ca0.5MnO3 thin films. Phys. Rev. B 68(2), 024432 (2003) CrossRefADSGoogle Scholar
  27. 27.
    L. Martin-Carron, A. de Andres, M.J. Martinez-Lope, M.T. Casais, J.A. Alonso, Raman phonons and light scattering in RMnO3 (R = La, Pr, Nd, Ho, Er, Tb and Y) orthorhombic and hexagonal manganites. J. Alloys Compd. 323, 494–497 (2001) CrossRefGoogle Scholar
  28. 28.
    M.N. Iliev, M.V. Abrashev, H.G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Phys. Rev. B 57(5), 2872–2877 (1998) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Song-Lin Li
    • 1
    • 2
  • Jie Li
    • 1
  • Yu Zhang
    • 1
  • Dong-Ning Zheng
    • 1
  • Kazuhito Tsukagoshi
    • 2
  1. 1.Institute of Physics and Beijing National Laboratory for Condensed Matter PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials ScienceTsukubaJapan

Personalised recommendations