Applied Physics A

, Volume 103, Issue 1, pp 33–42 | Cite as

Burstein–Moss shift and room temperature near-band-edge luminescence in lithium-doped zinc oxide



Nanopowders of pure and lithium-doped semiconducting ZnO (Zn1−x Li x O, where x= 0, 0.01, 0.03, 0.06, 0.09 and 0.15 in atomic percent (at.%)) are prepared by PEG-assisted low-temperature hydrothermal method. The average crystallite size is calculated using Debye–Scherrer formula and corrected for strain-induced broadening by Williamson–Hall (W–H) plot. The peak shift in XRD and the lattice constant of ZnO as a function of unit cell composition are predicted by Vegard’s law. The evolution of ZnO nanostructures from rod-shaped to particle nature is observed from TEM images and the influence of dopant on the morphology is investigated. The optical absorption measurement marks an indication that the incorporation of lithium ion into the lattice of ZnO widens the optical band gap energy from ∼2.60 to ∼3.20 eV. The near band edge (NBE) emission peak centered at ∼3.10 eV is considered to be the dominant emission peak in the PL spectra. Blue emission peak is not observed in doped ZnO, thus promoting defect-free nanoparticles. The Burstein–Moss shift serves as a qualitative tool to analyze the widening of the optical band gap and to study the shape of the NBE luminescence in doped ZnO nanopowders. FT-IR spectra are used to identify the strong metal–oxide (Zn–O) interaction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Yu, X.O. Yu, Environ. Sci. Technol. 42, 4902 (2008) CrossRefGoogle Scholar
  2. 2.
    Z. Fan, J.G. Lu, Int. J. High Speed Electron. Syst. 16, 883 (2006) CrossRefGoogle Scholar
  3. 3.
    O. Lupan, G. Chai, L. Chow, Microelectron. Eng. 85, 2220 (2008) CrossRefGoogle Scholar
  4. 4.
    E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. Lett. B 110, 16159 (2006) Google Scholar
  5. 5.
    B.S. Ong, C. Li, Y. Li, Y. Wu, R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007) CrossRefGoogle Scholar
  6. 6.
    R. Konenkamp, R. Word, C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004) CrossRefADSGoogle Scholar
  7. 7.
    R.M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, R.M. Penner, Chem. Mater. 10, 1120 (1998) CrossRefGoogle Scholar
  8. 8.
    Z.L. Wang, J. Phys., Condens. Matter 16, R829 (2004) CrossRefADSGoogle Scholar
  9. 9.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005) CrossRefADSGoogle Scholar
  10. 10.
    L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007) CrossRefGoogle Scholar
  11. 11.
    S. Baruah, S. Dutta, J. Sci. Technol. Adv. Mater. 10, 013001 (2009) CrossRefGoogle Scholar
  12. 12.
    J.C. Johnson, H. Yan, P. Yang, R.J. Saykally, J. Phys. Chem. B 107, 8816 (2003) CrossRefGoogle Scholar
  13. 13.
    L.S. Hsu, C.S. Yeh, C.C. Kuo, B.R. Huang, S. Dhar, J. Optoelectron. Adv. Mater. 7, 3039 (2005) Google Scholar
  14. 14.
    G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.A. Zapein, Y.H. Leung, L.B. Luo, P.F. Wang, C.S. Lee, S.T. Lee, Nano Lett. 8, 2591 (2008) CrossRefADSGoogle Scholar
  15. 15.
    Y. Miao, Z. Ye, W. Xu, F. Chen, X. Zhou, B. Zhao, L. Zhu, J.G. Lu, J. Appl. Surf. Sci. 252, 7953 (2006) CrossRefADSGoogle Scholar
  16. 16.
    T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka, Phys. Status Solidi B 229, 911 (2002) CrossRefADSGoogle Scholar
  17. 17.
    H.J. Xiang, J. Yang, J.G. Hou, Q. Zhu, Appl. Phys. Lett. 89, 223111 (2006) CrossRefADSGoogle Scholar
  18. 18.
    K. Ellmer, R. Mientus, Thin Solid Films 516, 4620 (2008) CrossRefADSGoogle Scholar
  19. 19.
    B. Yi, C.C. Lim, G.Z. Xing, H.M. Fan, L.H. Van, S.L. Huang, K.S. Yang, X.L. Huang, X.B. Qin, B.Y. Wang, T. Wu, L. Wang, H.T. Zhang, X.Y. Gao, T. Liu, A.T.S. Wee, Y.P. Feng, J. Ding, Phys. Rev. Lett. 104, 137201 (2010) CrossRefADSGoogle Scholar
  20. 20.
    W. Xie, Z. Yang, H. Chun, Ind. Eng. Chem. Res. 46, 7942 (2007) CrossRefGoogle Scholar
  21. 21.
    A.H. Salama, F.F. Hammad, J. Mater. Sci. Technol. 25, 314 (2009) Google Scholar
  22. 22.
    Q. Zhang, C.S. Dandeneau, S. Candelaria, D. Liu, B.B. Garcia, X. Zhou, Y.H. Jeong, G. Cao, Chem. Mater. 21, 4087 (2010) Google Scholar
  23. 23.
    R.N. Bhargava, D. Haranath, A. Mehta, J. Korean Phys. Soc. 53, 2847 (2008) CrossRefADSGoogle Scholar
  24. 24.
    M. Wu, L. Yao, W. Cai, G. Jiang, X. Li, Z. Yao, J. Mater. Sci. Technol. 20, 11 (2004) CrossRefGoogle Scholar
  25. 25.
    J. Wang, X.P. An, Q. Li, R.F. Egerton, Appl. Phys. Lett. 86, 201911 (2005) CrossRefADSGoogle Scholar
  26. 26.
    B.R. Bennett, R.A. Soref, A.D. Alamo, J. Quantum Electron. 26, 113 (1990) CrossRefADSGoogle Scholar
  27. 27.
    Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Appl. Phys. Lett. 85, 3833 (2004) CrossRefADSGoogle Scholar
  28. 28.
    A. Walsh, J.L.F. Da Silva, S.H. Wei, Phys. Rev. B 78, 075211 (2008) CrossRefADSGoogle Scholar
  29. 29.
    B. Saha, R. Thapa, K.K. Chattopadhyay, Solid State Commun. 145, 33 (2008) CrossRefADSGoogle Scholar
  30. 30.
    H.C. Hsu, C.Y. Wu, H.M. Cheng, W.F. Hsieh, Appl. Phys. Lett. 89, 013101 (2006) CrossRefADSGoogle Scholar
  31. 31.
    T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 85, 759 (2004) CrossRefADSGoogle Scholar
  32. 32.
    N.R. Yogamalar, R. Srinivasan, A. Chandra Bose, Opt. Mater. 31, 1570 (2009) CrossRefADSGoogle Scholar
  33. 33.
    H.L. Shi, Y. Duan, Eur. Phys. J. B 66, 439 (2008) CrossRefADSGoogle Scholar
  34. 34.
    V. Biju, S. Neena, V. Vrinda, S.L. Salini, J. Mater. Sci. 43, 1175 (2008) CrossRefADSGoogle Scholar
  35. 35.
    N.R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A. Chandra Bose, Solid State Commun. 149, 1919 (2009) CrossRefADSGoogle Scholar
  36. 36.
    L. Xiao-bo, S. Hong-Lie, Z. Hui, L. Bin-bin, Trans. Nonferr. Met. Soc. China 17, s814 (2007) Google Scholar
  37. 37.
    P.D.C. King, T.D. Veal, F. Fuchs, C.Y. Wang, D.J. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, R.G. Egdell, F. Bechstedt, C.F. McConville, Phys. Rev. B 79, 205211 (2009) CrossRefADSGoogle Scholar
  38. 38.
    N.R. Yogamalar, S. Anitha, R. Srinivasan, A. Vinu, K. Ariga, A. Chandra Bose, J. Nanosci. Nanotechnol. 9, 5966 (2009) CrossRefGoogle Scholar
  39. 39.
    A. Thangaraja, V. Savitha, K. Jegatheesan, Int. J. Nanotechnol. Appl. 4, 31 (2010) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Nanomaterials Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations