Advertisement

Applied Physics A

, Volume 102, Issue 4, pp 877–883 | Cite as

Computational investigations into the operating window for memristive devices based on homogeneous ionic motion

  • Mohammad NomanEmail author
  • Wenkan Jiang
  • Paul A. Salvador
  • Marek Skowronski
  • James A. Bain
Article

Abstract

A model that describes the homogeneous migration of oxygen vacancies as a function of electric field, temperature, and activation energy of diffusion was used to investigate the resistance switching and retention characteristics of memristive SrTiO3 Schottky devices. Numerical simulations suggest that, though ionic motion results in switching, it is not possible to meet the criteria of fast switching and long retention simultaneously; conditions that lead to sufficiently fast switching also lead to unacceptably fast decays of programmed states. However, an operational window is found when a term accounting for local enhancement of electric field in the dielectric is included. A discussion of the appropriateness of this inclusion is provided.

Keywords

Activation Energy Oxygen Vacancy Drift Velocity Resistance Switching Tunneling Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Strukov, G. Snider, D. Stewart, S. Williams, Nature 431, 80–83 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    A. Sawa, Mater. Today 11, 28–36 (2008) CrossRefGoogle Scholar
  3. 3.
    J.J. Yang, J. Borghetti, D. Murphy, D.R. Stewart, R.S. Williams, Adv. Mater. 21, 3754–3758 (2009) CrossRefGoogle Scholar
  4. 4.
    K. Jung, J. Choi, Y. Kim, H. Im, S. Seo, R. Jung, D.C. Kim, J.S. Kim, B.H. Park, J.P. Hong, J. Appl. Phys. 103, 034504 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429–433 (2008) CrossRefGoogle Scholar
  6. 6.
    C. Yoshida, K. Tsunoda, H. Noshiro, Y. Sugiyama, Appl. Phys. Lett. 91, 223510 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fujii, K. Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Kawai, K. Shimakawa, A. Odagawa, T. Takagi, Tech. Dig., Int. Electron Devices Meet. 779–782 (2007) Google Scholar
  8. 8.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632–2663 (2009) CrossRefGoogle Scholar
  9. 9.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312–320 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    J. Blanc, D.L. Staebler, Phys. Rev. B 4, 3548–3557 (1971) ADSCrossRefGoogle Scholar
  11. 11.
    D.B. Strukov, J.L. Borghetti, R.S. Williams, Small 5, 1058–1063 (2009) CrossRefGoogle Scholar
  12. 12.
    D.B. Strukov, R.S. Williams, Appl. Phys. A 94, 515–519 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    S.H. Jeon, B.H. Park, J.C. Lee, B.R. Lee, S.W. Han, Appl. Phys. Lett. 89, 042904 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    H. Shima, N. Zhong, H. Akinaga, Appl. Phys. Lett. 94, 082905 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    W. Jiang, D. Evans, J.A. Bain, M. Skowronski, P.A. Salvador, Appl. Phys. Lett. 96, 092102 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    R. Moos, W. Menesklou, K.H. Häerdtl, Appl. Phys. A 61, 389–395 (1995) ADSCrossRefGoogle Scholar
  17. 17.
    J. Maier, Physical Chemistry of Ionic Materials (Wiley, Chichester, 2004) CrossRefGoogle Scholar
  18. 18.
    S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, K. Eisenbeiser, Appl. Phys. Lett. 77, 1662–1664 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    G.M. Choi, H.L. Tuller, D. Goldschmidt, Phys. Rev. B 34, 6972–6979 (1986) ADSCrossRefGoogle Scholar
  20. 20.
    R. Waser, T. Baiatu, K.-H. Härdtl, J. Am. Ceram. Soc. 73, 1654–1662 (1990) CrossRefGoogle Scholar
  21. 21.
    C.R. Crowell, V.V.L. Rideout, Solid-State Electron. 12, 89–105 (1969) ADSCrossRefGoogle Scholar
  22. 22.
    H.-M. Christen, J. Mannhart, E.J. Williams, Ch. Gerber, Phys. Rev. B 49, 12095–12104 (1994) ADSCrossRefGoogle Scholar
  23. 23.
    H. Yamada, G.R. Miller, J. Solid State Chem. 6, 169–177 (1973) ADSCrossRefGoogle Scholar
  24. 24.
    K.G. Rajan, P. Parameswaran, J. Janaki, T.S. Radhakrishnan, J. Phys. D, Appl. Phys. 23, 694–697 (1990) ADSCrossRefGoogle Scholar
  25. 25.
    H.B. Huntington, A.R. Grone, J. Phys. Chem. Solids 20, 76–87 (1961) ADSCrossRefGoogle Scholar
  26. 26.
    U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, IEEE Trans. Electron Devices 56, 193–200 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    D.C. Kim, S. Seo, S.E. Ahn, D.-S. Suh, M.J. Lee, B.-H. Park, I.K. Yoo, I.G. Baek, H.-J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Appl. Phys. Lett. 88, 202102 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    L.A. Errico, G. Fabricius, M. Rentería, P. de la Presa, M. Forker, Phys. Rev. Lett. 89, 055503 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    J.W. McPherson, J. Kim, A. Shanware, H. Mogul, J. Rodriguez, IEEE Trans. Electron Devices 50(8), 1771–1778 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    A.B. Lidiard, Handb. Phys. 20, 246349 (1957) Google Scholar
  31. 31.
    R.W. Munn, J. Phys. C, Solid State Phys. 8, 2721–2728 (1975) ADSCrossRefGoogle Scholar
  32. 32.
    C.T. Black, J.J. Welser, IEEE Trans. Electron Devices 46(4), 776–780 (1999) ADSCrossRefGoogle Scholar
  33. 33.
    J.C. Slater, Phys. Rev. 78, 748–761 (1950) ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    R.A. Parker, Phys. Rev. 124, 1713–1719 (1961) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mohammad Noman
    • 1
    Email author
  • Wenkan Jiang
    • 2
  • Paul A. Salvador
    • 2
  • Marek Skowronski
    • 2
  • James A. Bain
    • 1
  1. 1.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations